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Abstract

Sparse rule base is one of the common problems in fuzzy rule-based systems,
and fuzzy rule interpolation (FRI) could derive interpolated results for the
input based on the neighbor fuzzy rules when the input is not matched by
any of the fuzzy rules. The core idea of FRI is that similar inputs would lead
to similar results, and several FRI methods that use a pre-defined number of
closest rules to obtain the interpolated results have been presented. However,
this could lead to the loss of some information as selecting a given number
of rules without considering the exact distance between them and the input
could lead to the selection of unwanted rules or the ignoring of similar rules.
This paper presents a density-based fuzzy rule interpolation method that uses
a density-based approach to search and select the closest rules for unmatched
inputs. Instead of selecting a given number of rules, the proposed method
adaptively selects the closest rules that are within a certain range of the
unmatched inputs, thus assuring the selected rules are with high similarity
to the inputs. The performance of the proposed method is verified through
fifteen classification benchmarks, showing the effectiveness and efficiency of
the proposed method.

Keywords: Fuzzy rule interpolation, Fuzzy rule base, Density-based
approach, Rule selection

1. Introduction

As one of the most popular and successful soft computing methods, fuzzy
rule-based systems have been widely used in many real-world applications
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[1–4]. Normally, to ensure the successful application of such a system, a
dense rule base that covers the entire input space to ensure the overlap with
existing rules for any new inputs is usually required. However, there are
cases where the knowledge is incomplete, as such a sparse rule rather than
a dense rule base could be available [5–7]. In such cases, an input may fail
to match and activate any of the existing rules from the rule base, thereby
leading to no conclusion. For such a problem, the concept of interpolating
in sparse rule bases, known as fuzzy rule interpolation (FRI), is introduced
for fuzzy systems where the rule base is sparse and unable to cover the input
space [8–11].

Various FRI approaches and their variations have been proposed in the
literature [12–16], and they can be generally divided into two categories. The
first one is called α-cuts [17, 18], where the interpolation is conducted by di-
rectly manipulating the antecedents of rules that are considered closest to
the given input. Hence, the consequent of the interpolated result could be
viewed as the combined outcome of all these rules involved. The second one
is called scale and move transformation-based FRI (TFRI) [19–21], which is
based on analogical reasoning, i.e., similar inputs would result in similar con-
sequents, and an intermediate rule is normally constructed and transformed
to obtain the consequent for the unmatched input.

TFRI has been popular for its ability to construct the intermediate rule
to accurately model the inputs of the unmatched inputs, thus enabling re-
liable and reasonable interpolated results [22–24]. However, as noted by
many previous studies, the interpolated results depend heavily on how the
intermediate rule is constructed, more specifically, as the intermediate rule
is normally constructed by combining several closest rules, the search and
selection of these closest rules directly affect the interpolated results [25–
27]. In many conventional T-FRI methods, the selection of closest rules is
achieved by selecting a pre-defined number of closest rules, however, the se-
lection of these rules does not necessarily consider how close these rules are
to the input, which may result in some low similarity rules to be selected, or
some high similarity rules to be ignored. Regarding these limitations, how
to properly search and select rules that are close to the inputs to construct
the intermediate rule remains one of the significant challenges for FRI.

The existing methods mainly use the user-defined number to determine
how many rules will be selected. However, this could lead to the loss of
information as a fixed number of rules is selected regardless of the actual
distance between the selected rules and the input [5]. Automatic selection
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of closest rules considering the distance between the rules and the input
regardless of the exact number of selected rules is clearly preferred. Recently,
the density-based approach, which adaptively searches for data that are close
to the given inputs while only considering the distance, has attracted much
attention and been applied to many clustering problems [28–31]. Thus, one
can adopt the density-based approach to adaptively select the closest rules
to the inputs from the distance perspective.

Motivated by the above, it is interesting to investigate whether selecting
the closest rules within a certain range instead of selecting a fixed number
of rules for the unmatched inputs could provide better performance. To this
end, this paper presents a density-based TFRI (D-TFRI) method, in the
proposed method, the search and selection of closest rules are carried out in
a density-based fashion, that is, instead of defining the number of rules to
be selected, the proposed method selects closest rules simply according to
their distance to the inputs, and rules that are within the selection range are
selected and used to generate the intermediate rule, where the weights of the
selected rules are determined based on their distance to the input. Moreover,
the scale and move operation of the conventional TFRI method is retained
for the constructed intermediate rule, and the interpolated results could be
obtained for unmatched inputs. Experiments are carried out to classical clas-
sification benchmarks, and the results show that the proposed method could
outperform conventional TFRI methods. Moreover, the proposed method is
shown to perform well when there are few rules in the sparse rule base or
when there are noisy data in the training datasets.

The remainder of this paper is organized as follows. Section 2 reviews the
relevant background of the proposed method. Section 3 details the process
of the proposed D-TFRI method. The performance of the D-TFRI method
is verified through experiments in Section 4. Section 5 concludes the paper.

2. Preliminaries

This section briefly reviews the basic interpolation process of conventional
TFRI. Suppose that a sparse rule base R with a set of fuzzy rules rk is given
for a n-dimensional problem, where the rule rk is represented as [5]:

IF x1 is A
k
1 and . . . and xn is A

k
n, THEN yk (1)

where xi is the i antecedent feature, which is described by the fuzzy value
Ak

i , and yk is the consequent.
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2.1. Representative values

Normally, triangular fuzzy membership functions are used to represent
fuzzy sets. Let Ai be a tuple representing a triangular fuzzy set Ai =
(ai1, ai2, ai3), where ai1, ai2, and ai3 are the left, normal and right point
of the fuzzy set, respectively. Then the representative value Rep(Ai) that
describes the overall geometric shape and location of Ai, is defined as [22]:

Rep(Ai) =
ai1 + ai2 + ai3

3
(2)

2.2. Selection of closest rules

Given an input o∗ = (A∗1, A
∗
2, . . . , A

∗
n), where A∗k denotes the kth feature

value of the input, then the distance between a rule rk and the input is
calculated as the aggregated distance of all the antecedent features, which
can be denoted as follows [25]:

d(rk, o∗) =

√√√√ N∑
i=1

d(Ak
i , A

∗
i )

2 (3)

where d(Ak
i , A

∗
i ) denotes the normalized distance of the absolute distance

measure, such that

d(Ak
i , A

∗
i ) =

|Rep(Ak
i )− A∗i |

maxAi
−minAi

(4)

where |Rep(Ak
i )− A∗i | is the absolute distance between the observed feature

valueA∗i and the representative value of the fuzzy setAk
i for the corresponding

attribute xi, and maxAi
and minAi

denote the maximal and minimal value
of xi, respectively. Once the distances between the given input and all the
rules in the rule base are calculated, the l(l ≥ 2) rules that have the minimal
distances to the input are selected as the closest l rules to the input.

2.3. Intermediate rule construction

Let ωAk
i

denote the weight of the ith antecedent fuzzy set Ak
i of the kth

rule rk such that

ωAk
i

=
ω′
Ak

i∑l
k=1 ω

′
Ak

i

(5)

4



where ω′
Ak

i
represents the similarity between the antecedent fuzzy set Ak

i and

the corresponding fuzzy value of the input, which is defined as:

ω′Ak
i

=
1

d(Ak
i , A

∗
i ) + 1

(6)

The intermediate fuzzy variable A′′i over i is constructed from the an-
tecedents of the l closest rules, which are moved to A′i to ensure that they
would have the same representative values as A∗i [24]:

A′i = A′′i + δAi
(max

Ai

−min
Ai

) (7)

where

A′′i =
l∑

k=1

ωAk
i
Ak

i (8)

δAi
= d(A∗i , A

′′
i ) (9)

Then, the moved intermediate consequent y′ can be computed using the
parameters ωyk and δy by aggregating the n corresponding values of A′i, such
that

y′ =
l∑

k=1

ωyky
k + δy(max

y
−min

y
) (10)

where ωyk and δy are calculated by

ωyk =
1

n

n∑
i=1

ωAk
i

(11)

δy =
1

n

n∑
i=1

δAi (12)

Subsequently, the scale and move transformation is carried out on the
intermediate rule to obtain the interpolated consequent, whose aim is to en-
sure that the antecedent feature values of the intermediate rule will coincide
with their corresponding fuzzy values in the unmatched input. The transfor-
mations are implemented in two stages: scale operation and move operation.
For scale operation, A′i is transformed to Â′i as the scale intermediate fuzzy

set to determine the scale rate sA. For move operation, Â′i is transformed to
A∗i to obtain a move ratio mAi

.
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Let A′i = (a′i1, a
′
i2, a

′
i3) be a triangular intermediate fuzzy set, the scale

rate sAi
is calculated by [5]:

sA′i =
a∗i3 − a∗i1
a′i3 − a′i1

(13)

which modifies the support length of A′i, i.e., ai3 − ai1 so that it becomes

the same as that of the input A∗i . The scaled intermediate fuzzy set Â′i is
obtained as [23]:

â′i1 =
(1 + 2sAi

)a′i1 + (1− sAi
)a+ i2′ + (1− sAi

)a′i3
3

â′i2 =
(1− sAi

)a′i1 + (1 + 2sAi
)a+ i2′ + (1− sAi

)a′i3
3

â′i3 =
(1− sAi

)a′i1 + (1− sAi
)a+ i2′ + (1 + 2sAi

)a′i3
3

(14)

The move operation then changes the position of Â′i to the same as A∗i ,
and the move ratio mA′i

is defined as [26]:

mA′i
=


3(a∗i1−â′i1)
â′i2−â′i1

, if a∗i1 > â′i1
3(a∗i1−â′i1)
â′i3−â′i2

, otherwise
(15)

Once all scale and move parameters are determined, the required factors
for analogically modifying the intermediate consequent y′ are calculated as
[5]:

sy′ =
1

n

n∑
i=1

sA′ (16)

my′ =
1

n

n∑
i=1

mA′ (17)

The scaled result ẑ′ of the intermediate consequent y′ is obtained as [5]:
ŷ′1 =

(1 + 2sy′)y
′
1 + (1− sy′)y′2 + (1− sy′)y′3

3

ŷ′2 =
(1− sy′)y′1 + (1 + 2sy′)y

′
2 + (1− sy′)y′3

3

ŷ′3 =
(1− sy′)y′1 + (1− sy′)y′2 + (1 + 2sy′)y

′
3

3

(18)
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Finally, the interpolated consequent y∗ is calculated by using the average
move ratio as [5]: 

y∗1 = ŷ′1 +my′γ

y∗2 = ŷ′2 − 2my′γ

y∗3 = ŷ′3 +my′γ

(19)

γ =

{
ŷ′2−ŷ′1

3
, if my′ > 0

ŷ′3−ŷ′2
3
, otherwise

(20)

3. Density-based fuzzy rule interpolation

In this section, the density-based fuzzy sparse rule-based inference ap-
proach is introduced. A generic framework is first presented, which is then
followed by the description of the algorithm for determining the closest rules
from the given sparse rule base, and the process of using such an algorithm
for TFRI is introduced.

3.1. Framework for sparse rule base interpolation

Without the loss of generality, let R = {r1, r2, . . . , rK} be the original
sparse fuzzy rule base with K fuzzy rules, and o∗ be an input expressed as:

rk : if x1 is Ak
1 and x2 is Ak

2 and · · · and xn is Ak
n, then y is Y k

o∗ : x1 is A∗1 and x2 is A∗2 and · · · and xn is A∗n

where xi (i = 1, 2, . . . , n) denotes the antecedent feature, y denotes the con-
sequent, Ak

i represents the fuzzy value of xi in the fuzzy rule rk, and Y k is
the fuzzy value of the consequent y in rk.

For a dense fuzzy rule base, given R and o∗, a consequent could be reached
by firing the matched fuzzy rules. However, if the fuzzy rule base is sparse,
and there is no fuzzy rule that matches the input, the fuzzy interpolative
inference would be needed as an alternative method to produce an estimated
consequent. To this end, the paper presents a general framework for inference
with sparse fuzzy rule base by integrating the conventional rule inference ap-
proach and a novel density-based TFRI (denoted as D-TFRI) method that
searches and selects close and suitable fuzzy rules to construct the inter-
mediate rule for an unmatched input. By combining the advantages of the
conventional rule inference approach for matched inputs and the advantages
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of D-TFRI method for unmatched ones, this integration could obtain more
accurate results. For any input, the fuzzy rule base is searched and checked
to determine if there is any rules that matched the input at first, if there
is at least one rule that matches the input, the result could be obtained by
firing the matched rules. Otherwise, the D-TFRI is employed to construct
the intermediate rule and estimate the consequent.

For an unmatched input, its close rules are firstly searched and selected
using the density-based approach, as detailed in Section 3.2. Then, given
several closest rules, the intermediate rule is constructed while considering
the distance from the input to the selected rules, as detailed in Section 3.3.
Through the density-based close rule selection and the weighted intermedi-
ate rule construction, a matched intermediate rule for the input could be
obtained, and the scale and move transformation of the conventional TFRI
approach is used to estimate the consequent.

3.2. Close rule search and selection

One of the biggest issues in constructing the intermediate rule for un-
matched inputs is to determine which existing rules should be selected to
construct the intermediate rule. In theory, the relationship of antecedent
features between the fuzzy rule and the unmatched input is generally consis-
tent with that of the consequents between the fuzzy rule and the unmatched
input, and the consequent of the unmatched input can be estimated by con-
structing the intermediate rule using the closest rule. However, as the fuzzy
rule base is sparse, the density of the fuzzy rules cannot be guaranteed, that is
to say, though the closest rule for the unmatched input is found, simply using
it to construct the intermediate rule may not be sufficient enough. There-
fore, in practice, when constructing the intermediate rule for an unmatched
input, the sparse fuzzy rule base is normally searched and sorted based on
the distance between the input and the fuzzy rules, and the top k closest
rules are selected to construct the intermediate rule, where k is a pre-defined
value based on experience. However, selecting the fixed amount of rules to
construct the intermediate rule for any unmatched inputs has its limitations:
(1) how to determine the value of k remains challenging, some researchers
claimed that two rules are sufficient enough for weighted TFRI [5], however,
it still needs further investigation and validation; (2) different inputs have
different characteristics, using a universal k value may not be effective for all
situations. In fact, due to the randomness and unpredictability of the input,
there could be cases where one input is very close to one fuzzy rule but not
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to any other rules, and one input has the similar distance to several rules.
In such cases, using a fixed value of k may not be effective and efficient.
This requires the introduction of a method that could properly search and
select a certain amount of fuzzy rules, not always the same amount, to any
unmatched inputs based on their characteristics and relationship with the
fuzzy rules.

The basic idea of the density-based searching approach is to find fuzzy
rules that are within a certain range of the unmatched input with regard to
the antecedent features. As fuzzy rules that are close to the input with regard
to the antecedent features generally would be close to the actual consequent
of the input, by limiting the distance from the input to the fuzzy rules with a
certain range instead of limiting the number of fuzzy rules to be selected, it is
ensured that the fuzzy rules are selected based on their absolute closeness to
the input rather than the relative closeness to the input. Reflecting this idea,
the search and selection of close rules to the unmatched input are conducted
through the following process.

(1) Calculation of the distance from the unmatched input to each rule in
the sparse fuzzy rule base with regard to antecedent features.

(2) Identification of the closest rule in the sparse fuzzy rule base to the
unmatched input.

(3) Expansion of the selected rules from the closest rule within the given
range to the unmatched input.

By doing so, for each unmatched input there are a certain amount of rules
that are within the range to be selected, corresponding to this specific input,
and for different inputs, not only the selected rules might be different, but also
the number of selected rules could be different, reflecting the relationship of
the antecedent features between the fuzzy rules and the input. The detailed
procedure of this process is presented in Algorithm 1.

In this method, for an unmatched input, the rule that is closest to it
in the sparse fuzzy rule base is firstly identified, it should be noted that
close is not necessarily describing the distance, other similarity measures
may also apply. In this paper, for simplicity, we use the conventional distance
measure presented in Eq. (3) to calculate the distance between each rule and
the input. It is also noted that the weights of different antecedent features
are not considered, as they are all set to have equal importance, though
the attribute weight calculation method could be utilized in the distance
calculation process.

Once the closest rule is identified, it is then used to search the rest sparse
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Algorithm 1 Close rule search and selection

Input: Sparse rule base R = {r1, r2, . . . , rK}, input o∗, selection range ε.
Output: Selected fuzzy rules for intermediate rule construction RS, distance

from the input to the selected fuzzy rules D.
1: Initialize the auxiliary rule base RA = R
2: for rk ∈ R do
3: Calculate the distance d(rk, o

∗) between rk and o∗

4: end for
5: Determine the closest rule rk with k = arg mink=1,2,...,K d(rk, o

∗)
6: Add rk to selected fuzzy rules RS = {RS} ∪ rk
7: Remove rk from RA as RA = RA \ {rk}
8: for ri ∈ RA do
9: Calculate the distance d(ri, rk) between ri and rk

10: if d(ri, rk) < ε then
11: Add ri to selected fuzzy rules RS = {RS} ∪ ri
12: end if
13: Remove ri from RA as RA = RA \ {ri}
14: end for
15: Calculate the distance from the input to the rules in RS

16: return Selected fuzzy rules RS, corresponding distance to the input D

rule base for other rules that are within the selection range. Similarly, these
rules are searched and selected based on the closeness, not to the input, but
to the selected rules. In this paper, the distance measure is used as:

d(rm, rk) =

√√√√ N∑
n=1

(d(Am
i , A

k
i )

2 (21)

where d(Am
i , A

k
i ) is calculated using the representative value by

d(Am
i , A

k
i ) =

|Rep(Am
i )−Rep(Ak

i )|
maxAi

−minAi

(22)

Finally, the distance between the input and each selected rule is obtained
for subsequent calculation. Through this density-based approach, it ensures
that only rules which not just close to the input, but within a certain range
are selected, thus enhancing the consistency in the selected rules. Normally,
the selection range ε is set to 0.1.
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For instance, consider the case shown in Fig 1. Suppose according to
prior knowledge, a sparse rule base with 6 rules, i.e., E1, E2, E3, E4, E5,
and E6, is constructed. Let E be an input that does not match any rules,
and its closest rules are E5, E4 and E3, in descending order, respectively.
Clearly, for conventional TFRI methods, as the number of selected rules k is
set to 2, only E5 and E4 will be selected to construct the intermediate rule,
however, this would lead to the ignore of E3, which has a similar distance
to E compared to E4 and E5. Moreover, only using E4 and E5 to construct
the intermediate rule would also lead to the loss of information as both rules
have the same values of U1, whereas the value of U1 of E3 is different. Thus,
when adopting conventional TFRI methods, that is, selecting a fixed number
of closest rules without considering the actual distance and distribution of
the rules, certain information could be lost and the interpolation performance
would be impacted. On the other hand, when adopting the proposed density-
based closest rule selection approach, by defining the selection range, E5,
E4 and E3 could all be selected, thus enabling more reliable and accurate
interpolation results.

1
U

2
U

21
A

22
A

23
A

11
A

12
A

13
A

2
E

3
E

1
E

4
E

E

5
E

6
E

Figure 1: Illustration of close rule selection

3.3. FRI with selected rules

The central idea of TFRI approach is to capture the significance degrees
of individual attribute features by the distance and use them to calculate the
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estimated consequent given an unmatched input. Therefore, it is natural to
use rules whose antecedent features are close to the unmatched input for the
interpolation. That is to say, the selected rules in the density-based approach
are expected to be used to construct the intermediate rule for the unmatched
input, which is followed by scale and move transformation to ensure that the
antecedent features of the intermediate rule coincide with the corresponding
values in the unmatched input. The detailed process of implementing the
FRI with selected rules is shown in Algorithm 2.

Algorithm 2 Fuzzy rule interpolation with selected rules

Input: Selected fuzzy rules for intermediate rule construction RS, distance
from the input to the selected fuzzy rules D, input o∗.

Output: Estimated consequent for the unmatched input y∗.
1: Obtain the weight ω′

Ak
i

of the ith antecedent feature of the kth selected

rule such that

ω′Ak
i

=
1

d(Ak
i , A

∗
i ) + 1

2: Calculate the intermediate fuzzy term A′′i over the ith antecedent fea-
ture by aggregating the antecedent features of l selected rules using the
normalized weight ωAk

i
= ω′

Ak
i
/
∑l

i=1 ω
′
Ak

i
as

A′′i =
l∑

k=1

ωAk
i
Ak

i

3: Compute the antecedent feature of the intermediate rule A′i based on A′′i
such that A′i = A∗i with

A′i = A′′i + δAi
(max

Ai

−min
Ai

)

4: Compute the consequent of the intermediate rule by aggregating the
consequents of l selected rules with the parameters ωyk and δy

5: Calculate the scale rate sA′i of A′i that could transform A′i to Â′i such that
it has the same scale as the corresponding antecedent feature in o∗ as

sA′i =
a∗i3 − a∗i1
a′i3 − a′i1

6: Obtain the move ratio mA′i
that transforms the position of Â′i to the same

as that of A∗i
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7: Obtain the scale and move parameters of the consequent attribute by
aggregating corresponding parameters of all attribute features as

sy′ =
1

n

n∑
i=1

sA′i

my′ =
1

n

n∑
i=1

mA′i

8: Calculate interpolated consequent y∗ by applying the scale and move
parameters to the intermediate consequent y′

9: return y∗

In this process, after obtaining the l close rules to the unmatched in-
put, it is easy to determine the weights of different antecedent features of
these rules based on their distance to the input. It is noted that for dif-
ferent antecedent features, different weights could be obtained for the same
rule, that is to say, as all the selected rules are not necessarily the one to
determine the consequent of the input, it is possible and practical to con-
sider these rules with regard to each antecedent feature. As the intermediate
rule is constructed by aggregating these rules and through scale and move
transformation, having different weights for different antecedent features for
computing the antecedent feature of the intermediate would generally have
little impact on the consistency.

Once the weights of different rules with regard to the same antecedent
feature are obtained and normalized, the corresponding intermediate fuzzy
term A′′i could be calculated by aggregating the antecedent features of differ-
ent rules considering the weights. However, it could be noted that in many
cases, A′′ does not necessarily have the same representative value as A∗i as it
is merely a weighted combination of all selected rules, as such it cannot be
directly used for the intermediate rule, even with scale and move transfor-
mation. Thus, A′′i is moved to A′i such that it has the same representative
value as A∗i . Note that the move operation here is conducted through the
distance between A′′i and A∗i , and it is different from the subsequent scale and
move transformation as it only deals with the representative value instead
of the shape of the fuzzy set. The consequent of the intermediate rule can
be computed by aggregating the corresponding consequents of the selected
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rules using parameters ωyk and δy, such that

ωyk =
1

n

n∑
i=1

ωAk
i

δy =
1

n

n∑
i=1

δAi

(23)

Though the constructed intermediate rule has the same representative
values of antecedent features as that of the unmatched input, their shape
is not necessarily identical. Hence, the scale and move transformations are
conducted to the intermediate rule, which aims to ensure that the antecedent
features of the intermediate rule coincide with that of the unmatched input.
In the proposed method, for each antecedent feature of the intermediate rule,
its scale rate sA′i and move ratio mA′ are obtained by using Eqs. (13)-(15).
Thus, for the consequent of the intermediate rule, it can also be modified
through the scale and move transformations to estimate the consequent of
the input, and the scale rate sy′ and the move ratio my′ are obtained by
averaging the corresponding factors of all antecedent features. On the basis
of the scale and move transformations, the interpolated consequent can be
obtained by using Eqs. (18)-(20).

4. Experiments

The proposed density-based fuzzy rule interpolation method is applied
in this section to fifteen benchmark classification datasets to test its perfor-
mance. The classification accuracies are compared with conventional TFRI
methods.

4.1. Experimental settings

In this case, in order to test the performance of the proposed method,
fifteen benchmark classification datasets from UCI machine learning dataset
repositories [32] are used, and the details of the datasets are summarized in
Table 1.

For the proposed method, triangular membership functions are employed
to represent fuzzy values of different antecedent attributes. For simplicity and
comparison purposes, a triangular membership function with three partitions
is adopted for all datasets after normalizing the antecedent attributes. To
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Table 1: Statistics on classification datasets

Dataset # instances # attributes # classes
Banknote 1372 5 2
Bupa 345 6 2
Car 1728 6 4
Diabetes 768 8 2
Ecoli 336 7 8
Glass 214 9 7
Haberman 306 3 2
Iris 150 4 3
Knowledge 403 5 4
Pageblocks 5472 10 5
Seeds 210 7 3
Transfusion 748 4 2
Wdbc 569 30 2
Winequality-red 1599 11 10
Yeast 1484 8 10

conduct the experiments, we run 5 times 10-fold cross-validation for each
dataset, that is, 90% data are used as training data to generate the rule base,
and 10% remaining data are used as testing data to test the performance of
the proposed method. The classical fuzzy rule base generation method [33]
is adapted to generate the initial rule base, where 30% of fuzzy rules are
purposefully randomly removed from the rule base to obtain a sparse rule
base to test the performance of the proposed method. The value of ε is set
to 0.1.

For testing data, the fuzzy rules in the rule base are checked first to
determine if there exist fuzzy rules that could match the input, if there
are matched rules, then the result could be obtained by aggregating the
consequents of matched rules. If there are no matched rules for the input in
the rule base, the FRI method is employed to search for close fuzzy rules and
generate the interpolated result.

4.2. Results

In order to demonstrate the performance of the proposed method, the
results of the proposed method are compared with several conventional FRI
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methods, including α-cuts [34] and TFRI [26], and the results are shown in
Table 2 and Fig 2.

Table 2: Average classification accuracy (%) of different FRI methods

Dataset
TFRI α-cuts D-TFRI

Sparse RB Full RB Sparse RB Full RB Sparse RB Full RB
Banknote 69.31 68.93 70.59 71.92 74.55 72.46
Bupa 54.84 52.10 52.63 52.77 58.55 53.89
Car 77.64 78.15 76.62 77.57 80.46 78.93
Diabetes 63.35 67.71 60.09 68.18 72.10 73.51
Ecoli 61.34 63.20 60.84 63.71 66.67 67.19
Glass 57.64 59.21 58.89 60.14 61.90 59.84
Haberman 71.29 72.04 70.32 73.38 71.88 72.51
Iris 92.67 93.33 93.33 94.00 94.00 93.67
Knowledge 73.85 74.47 69.43 70.58 72.33 73.25
Pageblocks 69.77 71.28 71.59 72.68 95.71 99.73
Seeds 75.46 73.50 73.30 75.14 80.48 74.76
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Figure 2: Classification accuracy of different FRI methods
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Table 2 illustrates the classification accuracies after averaging the results
of the 5 times 10-fold cross-validation of all three methods. For each method,
as 30% of fuzzy rules are randomly removed from the original rule base to
generate the sparse rule base, in order to thoroughly analyze and compare
the performance of the D-TFRI method, the classification accuracies of the
interpolated results with sparse rule base are directly compared with those
of the full rule base. By comparing the performance of the proposed method
on both the sparse rule base and full rule base, it is possible to investigate
if the proposed method could achieve better performance with more rules
available.

From Table 2 and Fig 2, it can be found that the proposed method could
outperform other methods for most datasets, where the classification accu-
racies of the proposed method for sparse rule base are often about 2%–5%
higher than those of other methods. Even for datasets where the perfor-
mance of the proposed method is not optimal, its classification accuracies
are generally satisfactory, and the difference between the performance of the
proposed method and that of the optimal method is mostly insignificant.
From the comparisons with other FRI methods, it can be said that the pro-
posed method is shown to be an effective way to provide reliable interpolated
results for unmatched inputs.

On the other hand, as can be seen from Table 2, by comparing the overall
performance of the proposed method with both sparse rule base and full rule
base, it is found that though the performance on the full rule base is better
than that on the sparse rule base for some datasets, the difference is not very
significant. Better performance on the full rule base can be expected as many
inputs may be matched by existing rules in the rule base in the first place,
thus reducing the burden of interpolation and increasing the classification
accuracy by firing the exact fuzzy rule that matches the input. However,
though there are more cases that require interpolation on the sparse rule base,
by employing the proposed D-TFRI method, the interpolated results are
shown to be relatively reliable, as the performance of the proposed method
on the sparse rule base is close to that on the full rule base. Moreover, it can
be noted from Table 2 that for most datasets, such as Seeds and Wdbc, the
performance of the proposed method on the sparse rule base is even better
than that on the full rule base, and that can be explained by the fact that
more interpolated results are obtained on sparse rule base, which indicates
that the proposed method could provide more reliable and accurate results
through interpolation than simply firing matched rules.
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Table 3 and Fig 3 show the running time of different methods, which
can be used to analyze the time complexity of the proposed method. From
Table 3 and Fig 3, it can be found that the proposed method has similar
or less running time for most datasets, which shows the efficiency of the
proposed method. It is also worth noting that for cases where the time
complexity of the proposed method is not optimal, the absolute difference is
relatively insignificant. Therefore, it can be said that the proposed method
could achieve satisfactory time complexity compared with other methods.
Combined with the accuracy of the proposed method, it can be concluded
that the proposed method could provide an effective and efficient way for
fuzzy rule interpolation.

Table 3: Running time (s) of different FRI methods

Dataset TFRI α-cuts D-TFRI
Banknote 0.0071 0.0075 0.0079
Bupa 0.0038 0.0043 0.0039
Car 0.3420 0.3412 0.3390
Diabetes 0.0219 0.0189 0.0228
Ecoli 0.0050 0.0052 0.0049
Glass 0.0023 0.0021 0.0020
Haberman 0.0016 0.0015 0.0017
Iris 0.0011 0.0012 0.0010
Knowledge 0.0082 0.0085 0.0086
Pageblocks 0.2032 0.2548 0.2161
Seeds 0.0029 0.0030 0.0025
Transfusion 0.0036 0.0035 0.0031
Wdbc 0.2370 0.2289 0.2322
Winequality-red 0.1680 0.1687 0.1692
Yeast 0.1481 0.1463 0.1490

Table 4 and Fig 4 show the number of testing data that require interpo-
lation on the sparse rule base and the full rule base, i.e., testing data that
are not matched by the fuzzy rules in the rule base. Though there are signifi-
cantly more interpolated results when using the sparse rule base, the average
classification accuracies obtained using the proposed method are higher than
those using the full rule base. Thus, with regard to improving classification
accuracy, the proposed method is shown to have significant potential.
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Figure 3: Running time of different FRI methods

Table 4: Average number of interpolated testing data

Dataset
Sparse rule base Full rule base

Interpolated Total Interpolated Total
Banknote 37 137 2 137
Bupa 16 35 3 35
Car 71 173 27 173
Diabetes 33 77 6 77
Ecoli 13 34 3 34
Glass 8 22 3 22
Haberman 12 31 1 31
Iris 7 15 1 15
Knowledge 19 40 7 40
Pageblocks 196 547 5 547
Seeds 10 21 3 21
Transfusion 31 75 2 75
Wdbc 51 57 46 57
Winequality-red 66 160 13 160
Yeast 53 148 10 148
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Figure 4: Average number of interpolated testing data

Moreover, the average improvements of the proposed D-TFRI method
over TFRI and α-cuts on sparse rule base are computed as 7.58% and 7.21%,
respectively, which directly indicates the superior performance of the pro-
posed D-TFRI method. Table 5 shows the statistical pairwise t-test results
on the classification accuracies of the proposed D-TFRI method compared
with TFRI and α-cuts. From the p-value, it can be found that the differences
are significant, thus, it can be further confirmed that the proposed D-TFRI
method performs significantly better than other methods. In general, it can
be said that by employing the density-based approach, the proposed D-TFRI
method could adaptively search and select close rules for interpolation with
unmatched inputs, and could provide better results than other FRI methods.

Table 5: Statistical pairwise t-test of classification accuracy for comparison of D-TFRI
with other methods

Method p-value Hypothesis
T-FRI 0.0076 Rejected
α-cuts 0.0082 Rejected

In order to better demonstrate the effectiveness and efficiency of the pro-
posed method, a nonparametric statistical test is performed, where the pro-
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posed method is compared in terms of classification accuracy and running
time. The Quade tests are performed in the widely used KEEL [35], and the
results are summarized in Tables 6-9.

First, the Quade test is conducted for classification accuracy, and the
results are shown in Table 6 and Table 7. For the first step, as listed in
Table 6, the ranking of the proposed method is 1.1167, where the Quade
statistic is 11.7592 and the p-value is 0.0002, which shows that the proposed
method could outperform TFRI and α-cuts. For the post hoc step, the
proposed method is compared pairwisely against other methods, where the
p-value of α-cuts is 0.0008 and the p-value of TFRI is 0.0024. Therefore, both
hypotheses are rejected in each pair-wise comparison, further confirming the
proposed method’s effectiveness.

Second, the Quade test is conducted for running time, and the results
are shown in Table 8 and Table 9. For the first step, the ranking of the
proposed method is 1.8750, with the Quade statistic of 0.1312 and the p-
value of 0.8775. For the post hoc step, the p-value of TFRI is 0.6227 and
the p-value of α-cuts is 0.6806. Hence, both hypotheses are accepted in
the pairwise comparison, which indicates that the proposed method has no
significant advantages in running time compared with TFRI and α-cuts.

From the statistical test results, it can be concluded that the proposed
method could provide a more reliable and effective fuzzy rule interpolation
method without increasing time complexity.

Table 6: Average rankings of Quade test of classification accuracy of different methods

Method Ranking Quade statistic P-value
TFRI 2.3750

11.7592 0.0002α-cuts 2.5083
D-TFRI 1.1167

Table 7: Post hoc comparison for α = 0.05 of classification accuracy of different methods

i Method z = (R0 −Ri)/SE p
2 α-cuts 3.3534 0.0008
1 TFRI 3.0322 0.0024
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Table 8: Average rankings of Quade test of running time of different methods

Method Ranking Quade statistic P-value
TFRI 2.0792

0.1312 0.8775α-cuts 2.0458
D-TFRI 1.8750

Table 9: Post hoc comparison for α = 0.05 of running time of different methods

i Method z = (R0 −Ri)/SE p
2 TFRI 0.4920 0.6227
1 α-cuts 0.4117 0.6806

4.3. Sensitivity analysis

To further analyze the effectiveness of the D-TFRI method in interpola-
tion for unmatched inputs, we further conduct some experiments. In Section
4.2, 30% of full rules are randomly removed from the original rule base to
generate the sparse rule base, and the classification accuracies of the D-TFRI
method on the sparse rule base are compared with those on the full rule base.
However, it is worth investigating how would different level of sparse of the
sparse rule base would affect the performance of the D-TFRI method. In this
section, we change the percentage of randomly removed rules of the original
rule base from 0% to 60% to further investigate the performance of the pro-
posed D-TFRI method. The results of the sensitivity analysis are shown in
Fig 5, where the missing rate of x% means that we randomly remove x% of
fuzzy rules from the original rule base.

From the results in Fig 5, it can be observed that for most datasets, with
the increase of missing rate, i.e., the increase of level of sparse of the sparse
rule base, the classification accuracy would increase at first, that is, the
proposed D-TFRI method performs better on sparse rule base than full rule
base. That can be explained by the fact that the interpolated results for the
unmatched inputs are normally based on the consequents of several closely
related fuzzy rules, thus, by considering several close rules instead of simply
firing the one matched rule, it is possible to enhance the consistency and
reliability of the results, which may lead to more reliable and accurate results.
It is also worth noting that when the missing rate increases to more than 40%,
the classification accuracies would decrease, and that is because as more rules
are removed from the original rule base, the sparse rule base becomes more
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Figure 5: Performance of D-TFRI with different missing rate

and more incomplete, and it may become difficult for some unmatched inputs
to find appropriate rules for interpolation as these rules may be removed.
However, as shown in Fig 5, for most datasets, the classification accuracies
of the proposed D-TFRI method for sparse rule base with 60% missing rate
are still satisfactory. Moreover, it can be observed that for some datasets,
such as Pageblocks and Yeast, the classification accuracy decreases with the
increase of missing rate, which indicates that the original rule base is of
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high consistency, and removing these rules weakens the performance of the
sparse rule base. In general, from the sensitivity analysis, it can be found
that the proposed D-TFRI method could provide reliable and satisfactory
performance even when there is a high level of sparse of the sparse rule base,
and is shown to be effective for most classification datasets.

4.4. Robustness analysis

In order to analyze the effectiveness of the proposed D-TFRI method in
dealing with noisy data, the robustness analysis is conducted in this sec-
tion. In this case, we consider two different scenarios of noisy data, attribute
noise and consequent noise. Attribute noise means that certain percent-
ages of training data whose attribute values are randomly replaced by values
generated between the minimum and maximum values of the corresponding
attribute, and consequent noise means that certain percentages of training
data whose consequents are replaced by different labels of the dataset. In
this section, we change the level of noisy data from 0% to 20%, where the
noisy rate of x% means that x% of training data are randomly selected as
noisy data. The results of the robustness analysis are shown in Fig 6.

In Fig 6, the blue line denotes the classification accuracy of D-TFRI with
attribute noise, and the red line denotes the classification accuracy of D-TFRI
with different consequent noise. From Fig 6, it can be found that when there
are noisy data in the training dataset, the performance of D-TFRI would
generally be affected, as these noisy data could be used to generate the rule
base. However, one interesting observation is that for most datasets, the
performance of D-TFRI with attribute noise is generally better than those
with consequent noise, and that can be explained by the fact that all these
datasets have several attributes to be considered, and adding noise to one
attribute would have less impact on the performance than adding noise to the
consequent. Another interesting observation is that for some datasets, such
as Pageblocks, when attribute noise occurs, the performance of the D-TFRI
generally remains the same, which could be caused by the inconsistency in
the dataset as well as the removal of some noisy rules when obtaining the
sparse rule base. In general, from the robustness analysis, it can be found
that the proposed method can provide reliable results even when there are
noisy data in the training data.
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Figure 6: Performance of D-TFRI with different noise rate

4.5. Discussion

By employing the density-based search and selection scheme, the pro-
posed D-TFRI method could benefit in the following aspects. First, by
searching fuzzy rules for unmatched inputs using distance measures and only
selecting rules that are within a certain radius of the unmatched inputs, it
can be guaranteed that the selected rules are rules that are close and similar
enough to the unmatched input. Secondly, by weighing different selected
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rules according to their distance to the unmatched inputs, it can assure that
rules closer to the input would play more important roles in determining the
intermediate rule.

From the experimental results, it can be noted that, compared with other
FRI methods, the proposed method is capable of producing better results, as
its classification accuracies are significantly higher than those of other FRI
methods. And that is due to the density-based search and selection scheme
as the proposed method could ensure the selected rules are rules that are
close to the input regardless of the number of rules to be selected, whereas
other FRI methods mainly limit the number of rules to be selected, which
could lead to the loss of some information. Moreover, both the sensitivity
analysis and the robustness analysis further confirm the good performance of
the proposed method, as it could provide reliable results when the sparse rule
base contains significantly less information or there are a significant amount
of noisy data in the training data.

Nevertheless, there are still some limitations to our work. The selection
range ε is crucial to the performance of D-TFRI as it determines how many
rules would be selected to construct the intermediate rule, thus, how to
properly determine the appropriate value of ε remains an important issue.
In addition, the search and selection of close rules considers all the attributes
in the dataset, which may benefit large-scale and middle-scale datasets, but
for some small-scale datasets, the knowledge of the experts might be needed
to enhance the performance of the proposed method.

5. Conclusion

In this paper, a density-based fuzzy rule interpolation method is proposed
to deal with unmatched inputs for sparse rule base. For unmatched inputs,
through the density-based approach, fuzzy rules that are close to the input
could be adaptively searched and selected, which could ensure only rules
that are within the selection range of the unmatched input could be selected.
Then, the selected rules are used to generate the intermediate rule and ob-
tain the interpolated consequent, where the weights of the selected rules are
calculated according to their distance to the unmatched input. Fifteen clas-
sification benchmarks are tested with 10-fold cross-validations to validate the
effectiveness and efficiency of the proposed method.

Experimental results show that the proposed method could provide sat-
isfactory classification accuracies for sparse rule base, and could outperform
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other FRI methods. Furthermore, through sensitivity analysis, it can be
found that the proposed method could provide stable performance when
there are a large amount rules missing in the sparse rule base, which could
further illustrate the effectiveness of the proposed method. The robustness
analysis shows that when noisy data is encountered, the performance of the
proposed method is still satisfactory. In general, it can be concluded that
the proposed method could effectively provide reliable interpolation results
for unmatched inputs with sparse rule base.

In the proposed method, the value of the selection range is determined
subjectively, in the future, we will further investigate combining optimization
methods with the proposed method to reliably determine its value. Further-
more, we will apply the proposed method to other large-scale problems to
expand the application of the proposed method.
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