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Abstract

The extended belief rule-based (EBRB) system is shown to have the potential
to handle both quantitative and qualitative information under uncertainty,
and it has been used as an effective tool for decision support and classification
problems. However, despite these advances, several drawbacks have emerged
recently, and the most significant one is caused by its similarity measure using
Euclidean distance, which could lead to counterintuitive individual matching
degrees, while other widely used similarity measures have not been studied
for their application in the EBRB system. To this end, seventeen similarity
measures are investigated and applied in the EBRB system in this paper,
and based on the analysis, an ensemble method for EBRB system with dif-
ferent similarity measures is proposed. Firstly, the problem of the similarity
measure of the conventional EBRB system is investigated. Then, a variety
of similarity measures are analyzed and their application in the EBRB sys-
tem is studied. Next, the ensemble method for EBRB systems with different
similarity measures is proposed, which consists of two parts, the adaptive
weight learning method for determining the weight of each EBRB system
with different similarity measures, and the evidential reasoning (ER)-based
combination method for combining the inferential results of different meth-
ods. Finally, 25 classification datasets are studied to test the performance
of EBRB systems with different similarity measures as well as the proposed
method, and the results are compared with existing works. The compari-
son results show that the proposed method could not only achieve better
results than any other EBRB systems with different similarity measures, but
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also outperform other conventional classifiers on some classification datasets,
especially small-scale datasets.

Keywords: Extended belief rule-based system, Similarity measure,
Classification

1. Introduction

Among various knowledge representation schemes, the rule-based system
has been significant for its ability to model various kinds of human cognition
under the same framework using simple “IF-THEN” rules [1], and it has be-
come one of the fastest-growing methods in the field of artificial intelligence
and decision support system [2–4]. In conventional rule-based system, simple
IF-THEN rules such as “IF failure rate is high, THEN risk is high” are used to
construct the rule base, where both the antecedent and consequent terms are
believed to be 100% certain, however, such strict knowledge representation
scheme may not be sufficient in expressing information with uncertainty. To
this end, many novel rule-based systems have been developed [5–9]. Among
these methods, the belief rule-based (BRB) system proposed by Yang et al.
[10] has received extensive attention. Based on Dempster-Shafer (D-S) theory
of evidence, fuzzy set theory and rule-based system, the BRB system uses
belief structure in the consequent terms to capture uncertain information,
and provides a more flexible way to represent various kinds of knowledge un-
der uncertainty, such as fuzziness, ignorance, and incompleteness. However,
the uncertainty in the antecedent terms has yet to be addressed, to this end,
Liu et al. [11] proposed a more general belief rule-based system, where belief
structures are embedded in the antecedent attributes of each rule, called the
extended belief rule-based (EBRB) system. With belief structures embedded
in both the antecedent and consequent terms of each rule, the EBRB system
can more effectively deal with different kinds of uncertainty and present more
accurate results. Compared to conventional rule-based system and BRB sys-
tem, the EBRB system has the following advantages [12–14]:

(1) Belief structures are embedded in both the consequents and antecedent
attributes of the extended belief rule. Hence, both conventional IF-THEN
rules and belief rules can be regarded as special cases of extended belief rules.

(2) The EBRB system can be either a knowledge-driven or a data-driven,
or combined decision model, which makes it possible to directly generate
rules from input-output data pairs.
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Therefore, the EBRB system has been used in various decision-making
problems, such as health estimation [15], environmental mentoring [16, 17],
activity recognition [18, 19], and many others [20–24]. However, there are
several drawbacks in the process of determining activated rules and their ac-
tivation weight in the conventional EBRB system, and several studies have
been conducted tackling these problems [25–28]. For instance, Zhang et al.
[29] proposed a new rule reduction method based on DBSCAN algorithm for
EBRB system, where similar rules are searched and fused to reduce the size of
the EBRB and remove the impact of noise and redundant rules. Yang et al.
[30] proposed a new activation rule determination and weight calculation
method, where the activation region of extended belief rules is constructed
to remove the impact of inconsistent rules and improve the conventional
EBRB system. Yang et al. [31] introduced data envelopment analysis (DEA)
to the EBRB system to evaluate the efficiency of each rule for rule reduction,
and used the classic CCR (Charnes, Cooper, and Rhodes) model to calcu-
late the efficiency value of the extended belief rule and achieve the compact
structure of an EBRB. Zhu et al. [32] proposed a minimum centre distance
rule activation (MCDRA) method, which requires no subjective information
or iteration procedure while unrelated simples are eliminated and related
simples are selected and activated.

However, despite these advances, little attention has been paid to the
activation weight calculation formula itself, where the similarity between the
input and each rule as well as the weight of each rule are used to deter-
mine to what extent each rule is activated. In conventional EBRB systems,
the similarity between the extended belief rule and the input is obtained
by simply calculating the Euclidean distance between two belief structures,
which could limit its application in some situations, as different problems
may require different methods. The similarity calculation requires further
research because: (1) Due to the limitation of the Euclidean distance, the
calculated activated weights of the rules could be inconsistent; (2) There has
been numerous research on the similarity measure for belief functions, such
as Jousselme distance, Chebyshev distance, and Tanimoto similarity, which
could be used to calculate the similarity between the input and the extended
belief rules.

As different similarity measures have different applicability and effective-
ness, it is possible to develop a more effective measure that could combine
the results of different similarity measures. Therefore, motivated by these
challenges and advancements, seventeen different similarity measures are in-
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vestigated in this paper for their potential application in the EBRB sys-
tem. Furthermore, on the basis of that, an adaptive weight learning method
for EBRB system with different similarity measures is proposed. Firstly,
seventeen different measures are investigated, including Jousselme distance,
Manhattan distance, Intersection similarity, and many others. Secondly, an
adaptive weight learning method for similarity measures based on the differ-
ential evolution (DE) algorithm is introduced, and an evidential reasoning
(ER)-based combination method for EBRB systems with different similarity
measures is subsequently proposed. Finally, an experiment on classification
problems is conducted to illustrate the effectiveness and efficiency of the
proposed method.

The remainder of this paper is organized as follows. Section 2 briefly
describes the basics of extended belief rule-based system. Section 3 reviews
the problem in current similarity measure of the EBRB system, and inves-
tigates different kinds of similarity measures. The adaptive weight learning
method for EBRB systems with different similarity measures is proposed in
Section 4. An experiment on classification problem is illustrated in Section
5 to demonstrate the effectiveness of the proposed method, and Section 6
concludes the paper.

2. Preliminaries

Based on the belief rule-based system, Liu et al. [11] proposed the ex-
tended belief rule-based system, where the belief degrees are embedded in
both the consequents and the antecedent attributes of each rule. The ex-
tended belief rule-based system is composed of two parts, the extended be-
lief rule base (EBRB) which stores various kinds of information under un-
certainty, and the ER-based inference approach for aggregating activated
extended belief rules.

2.1. Extended belief rule base

In the EBRB system, the EBRB is used to store various kinds of informa-
tion under uncertainty, such as qualitative and quantitative, complete and
incomplete, linguistic and numerical information. An EBRB is comprised of
a series of extended belief rules, and the kth rule in the EBRB is expressed
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as:
Rk :IF U1 is {(Ak

1,j, α
k
1,j), j = 1, . . . , J1} ∧ · · · ∧

UM is {(Ak
M,j, α

k
M,j), j = 1, . . . , JM},

THEN D is {(Dn, β
k
n), n = 1, . . . , N},

with rule weight θk and attribute weights {δ1, . . . , δM}

(1)

where αk
i,j is the belief degree to which Ui is evaluated to be the referential

value Ak
i,j in the kth rule with 0 ≤ αk

i,j ≤ 1 and
∑Ji

j=1 α
k
i,j ≤ 1 (i = 1, . . . ,M).

βk
n is the belief degree to which D is evaluated to be the referential value

Dn in the kth rule with 0 ≤ βk
n ≤ 1 and

∑N
n=1 β

k
n ≤ 1. The consequent is

complete when
∑N

n=1 β
k
n = 1, otherwise, it is incomplete. θk (0 ≤ θk ≤ 1)

and δi (0 ≤ δi ≤ 1) denotes the rule weight and attribute weight respectively.
k = 1, . . . , L, and L is the number of the extended belief rules in the EBRB.

2.2. Inference approach using the ER algorithm

Based on the ER algorithm, the inference process of the EBRB system
comprises the calculation of the individual matching degree, calculation of
the activation weight and combination of the activated rules. Firstly, sup-
pose xi represents the input of the ith antecedent attribute Ui, then it can
be transformed into belief structure using utility-based information transfor-
mation technique as follows [10]:

S(xi) = {(Ai,j, αi,j), j = 1, . . . , Ji} (2)

with

αi,j =
u(Ai,j+1)− xi

u(Ai,j+1)− u(Ai,j)
, αi,j+1 = 1− αi,j,

if u(Ai,j) ≤ xi ≤ u(Ai,j+1)

αi,m =0, if m = {1, . . . , Ji} and m ̸= j, j + 1

(3)

where Ai,j represents the jth referential value in the ith antecedent attribute,
αi,j is the belief degree to which the input xi is assessed to the referential
value Ai,j, u(Aij) is the utility value of Ai,j.

2.2.1. Individual matching degree

Suppose the input is obtained as S(xi) = {(Ai,j, αi,j)}, then the individual
matching degree Sk

i of xi to Ui of the kth rule, which represents how close
these two belief structures are, is defined as:

Sk,i = 1− dk,i (4)
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with

dk,i = dk(xi, Ui) =

√√√√ Ji∑
j=1

(αi,j − αk
i,j)

2 (5)

2.2.2. Activation weight

Once the individual matching degree of each rule is obtained, the activa-
tion weight of each rule can be calculated, and the activation weight of the
kth extended belief rule is calculated as:

ωk =
θk
∏M

i=1 (S
k
i )

δi∑L
l=1(θl

∏M
i=1 (S

l
i)

δi)
(6)

with

δi =
δi

maxi=1,...,M{δi}
(7)

where θk represents the rule weight of the kth rule, δi represents the weight
of the ith attribute in the kth rule. It should be noted that

0 ≤ ωk ≤ 1 (k = 1, 2, . . . , L),
L∑

k=1

ωk = 1 (8)

with ωk = 0 denoting that the kth rule is not activated.

2.2.3. Rule aggregation

After calculating the activation rule weight, the ER algorithm is applied
for aggregating activated extend belief rules. Firstly, the consequent of each
activated rule is transformed into the basic probability mass:

mn,k = ωkβn,k

mD,k = 1− ωk

N∑
n=1

βn,k

m̄D,k = 1− ωk

m̃D,k = 1−
N∑

n=1

βn,k

(9)

where mn,k represents the basic probability mass assigned to the nth grade,
and mD,k represents the basic probability mass unassigned to any grades.
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mD,k = m̄D,k + m̃D,k, with m̄D,k representing the incompleteness caused by
the activation weight of the kth rule and m̃D,k representing the incomplete
of the kth rule.

Then, the analytical ER process is introduced as follows to aggregate L
rules:

mn = µ

[
L∏

k=1

(mn,k + m̄D,k + m̃D,k)−
L∏

k=1

(m̄D,k + m̃D,k)

]

m̃D = µ

[
K∏
k=1

(m̄D,k + m̃D,k)−
L∏

k=1

m̄D,k

]

m̄D = µ

[
L∏

k=1

m̄D,k

] (10)

with

µ =

[
N∑

n=1

L∏
k=1

(mn,k + m̄D,k + m̃D,k)− (N − 1)
L∏

k=1

(m̄D,k + m̃D,k)

]−1

(11)

Next, the belief degree of each grade can be calculated as:

βn =
mn

1− m̄D

βD =
mD

1− m̄D

(12)

where βn represents the belief degree of the nth grade, and βD represents
the belief degree of the incomplete information. Hence, the aggregated result
can be described as:

S = {(Dn, βn), n = 1, 2, . . . , N} (13)

2.2.4. Inferential result calculation

Finally, the inferential result of the EBRB system could be obtained based
on the combined belief structure. For regression problem, suppose u(Dn) is
the utility value of the nth consequent Dn, then the inferential result can be
obtained as:

f =
N∑

n=1

u(Dn)βn +
u(D1) + u(DN)

2

(
1−

N∑
n=1

βn

)
(14)
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For classification problem, suppose Dn represents the nth class, and the
inferential result can be expressed as follows:

f = Dn, n = argmaxn=1,...,N(βn) (15)

3. Similarity measures

In this section, the limitation of current similarity measure of the EBRB
system is analyzed at first. Then, seventeen other similarity measures for
EBRB systems are introduced.

Let m1 and m2 be two evidences, where m1,j and m2,j denote the basic
probability mass assigned to the jth grade in m1 and m2, respectively. The
definitions of the similarity measures are given as follows.

3.1. Similarity measure of the EBRB system

In the inference approach of the EBRB system, similarity measure is used
to calculate the individual matching degree between the input and the ex-
tended belief rules, as shown in Eq. (4). However, there are several problems
in the similarity measure. According to Eqs. (4)-(6), the calculation formula
of individual matching degree can be deduced as follows:

Sk
i = 1−

√√√√ Ji∑
j=1

(αi,j − αk
i,j)

2 ≥ 1−

√√√√ Ji∑
j=1

|αi,j − αk
i,j|

≥ 1−

√√√√ Ji∑
j=1

(|αi,j|+ |αk
i,j|) = 1−

√√√√ Ji∑
j=1

αi,j +

Ji∑
j=1

αk
i,j

≥ 1−
√
2

(16)

It is obvious from Eq. (16) that a necessary normalization is neglected in
Eq. (4), and the lower bound of individual matching degrees is 1−

√
2, which

could lead to counterintuitive individual matching degrees. To this end, there
have been several modifications. For example, Zhang et al. [29] limited the
values of individual matching degrees by defining Sk

i = 0 for cases where
dki > 1. Yang et al. [31] used the Jousselme distance instead of the Euclidean
distance to calculate the distance between the two belief structures. However,
though these modifications have provided promising results, there lack of
comprehensive investigation of possible similarity measures of the EBRB
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system to enhance its performance. As the belief structure used in the EBRB
system can be regarded as a piece of evidence with single hypotheses, evidence
similarity measures could be applied in the EBRB system. Therefore, several
kinds of similarity measures are investigated for the application in the EBRB
system.

3.2. Similarity measures

In this subsection, 17 similarity measures are introduced, such as Man-
hattan distance, Chebyshev distance, and Lorentzian distance. It should be
noted that since distance measure and similarity measure are interchangeable
[33], both distance measures and similarity measures are introduced in this
subsection.

3.2.1. Minkowski family

The Minkowski family of distance has been widely applied in evidence the-
ory, which includes some of the most popular similarity measures such as Eu-
clidean distance, Manttan distance, and Chebyshev distance. The Minkowski
family of distance between two belief structures can be expressed under the
following general form [34]:

dw(m1,m2) =

([
(Um1 − Um2)

p
2

]′ [
(Um1 − Um2)

p
2

]) 1
p

(17)

where U is the upper triangular matrix of Cholesky decomposition of the
matrix W , that is W = U ′U , and p is an integer greater than 1. Typical
cases are p = 1, p = 2 and p = ∞, which lead to the Manhattan, Euclidean
and Chebyshev distances, respectively.

When p = 1, Eq. (17) becomes the Manhattan distance as follows [35]:

dMan(m1,m2) =
J∑

j=1

|m1,j −m2,j| (18)

When p = 2, Eq. (17) becomes the Euclidean distance, as shown in
Eq. (6), and it has been predominantly used as the distance measure in the
EBRB system.

When p = ∞, it becomes Chebyshev distance, which relies on a max
operator, and it can be expressed as [36]:

dCheb(m1,m2) = max
j

|m1,j −m2,j| (19)
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3.2.2. Manhattan family

There have been several new modifications based on the Manhattan dis-
tance, and most of them can be used to measure the distance between the
input and the extended belief rules in the EBRB system. As these distance
measures facilitate the Manhattan distance, they may be able to reach better
results. These distance measures include Sorensen distance and Lorentzian
distance.

Sorensen distance uses the sum of m1 and m2 as the denominator, and
can be expressed as [37]:

dSor(m1,m2) =

∑J
j=1 |m1,j −m2,j|∑J
j=1 (m1,j +m2,j)

(20)

Obviously, since both m1 and m2 are complete belief structures, it is the
Manhattan distance divided by 2.

Lorentzian distance applies both the absolute difference and the natural
logarithm, and is expressed as follows [38]:

dLor(m1,m2) =
J∑

j=1

ln(1 + |m1,j −m2,j|) (21)

where 1 is added to maintain non-negativity while avoiding the log of 0.

3.2.3. Intersection similarity

The intersection similarity uses the minimum value to calculate the sim-
ilarity between two probability density functions, as belief structures can be
regarded as evidence with single hypotheses, the intersection similarity could
be applied as the similarity measure. It should be noted that the Intersec-
tion similarity directly calculates the similarity instead of distance, and it is
calculated using the sum of minimum belief degrees of m1 and m2 as follows
[38]:

SIS(m1,m2) =
J∑

j=1

min(m1,j,m2,j) (22)

3.2.4. Inner family

The Inner family of similarity measures is frequently used in the fields of
information retrieval and biological taxonomy for the binary feature vector
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comparison, and can be expressed as the following general form [34]:

SW (m1,m2) = m′
1Wm2 (23)

where the weighting matrix W can be qualified as a similarity matrix, and
different similarity measures can be obtained. These similarity measures
include Inner product similarity, Tanimoto similarity, Cosine similarity, and
Dice similarity.

Inner product similarity directly calculates the product of two belief struc-
tures, and is expressed as follows [38]:

SIP (m1,m2) =
J∑

j=1

m1,jm2,j (24)

Tanimoto similarity is calculated as follows [39]:

STani(m1,m2) =

∑J
j=1 m1,jm2,j∑J

j=1 (m1,j)
2 +

∑J
j=1 (m2,j)

2 −
∑J

j=1m1,jm2,j

(25)

Cosine similarity has been widely used to calculate the similarity between
two belief structures, and is defined as [38]:

SCos =

∑J
j=1m1,jm2,j√∑J

j=1 (m1,j)
2
√∑J

j=1 (m2,j)
2

(26)

Based on both the inner product and the sum of the squares of two belief
structures, Dice similarity is defined as [40]:

SDice(m1,m2) =
2
∑J

j=1 m1,jm2,j∑J
j=1 (m1,j)

2 +
∑J

j=1 (m2,j)
2

(27)

3.2.5. Fidelity family

Based on the square root of probability distributions, the Fidelity family
is a popular measure of distance in quantum theory, and includes Fidelity
similarity, Bhattacharyya distance, Hellinger distance, Matusita distance,
and Squared-Chord similarity.
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Fidelity similarity directly uses the square root to calculate similarity
between two belief structures as follows [38]:

SFid(m1,m2) =
J∑

j=1

√
m1,jm2,j (28)

Bhattacharyya distance combines the square root and the natural loga-
rithm, and is expressed as follows [41]:

dB(m1,m2) = − ln
J∑

j=1

√
m1,jm2,j (29)

Hellinger distance is calculated as follows :

dHel(m1,m2) =

√√√√2
J∑

j=1

(√
m1,j −

√
m2,j

)2
= 2

√√√√1−
J∑

j=1

√
m1,jm2,j (30)

Matusita distance is represented as follows [38]:

dMat(m1,m2) =

√√√√ J∑
j=1

(√
m1,j −

√
m2,j

)2
=

√√√√2− 2
J∑

j=1

√
m1,jm2,j (31)

Squared-Chord similarity is represented as follows [42]:

SSq = 2
J∑

j=1

√
m1,jm2,j − 1 (32)

3.2.6. Squared Euclidean distance

Based on the Euclidean distance, the Squared Euclidean distance is cal-
culated as follows [33]:

dsqe(m1,m2) =
J∑

j=1

(m1,j −m2,j)
2 (33)
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3.2.7. Jousselme distance measure

Proposed by Jousselme et al. [43], Jousselme distance has been widely
used to calculate the similarity between two belief structures. It combines
the inner product and the Jaccard index, and is defined as:

dJou(m1,m2) =

√
1

2
(m1 −m2)

′D(m1 −m2) (34)

where D is the Jaccard matrix, and it represented as

D(A,B) =
|A ∩B|
|A ∪B|

, A,B ∈ 2X (35)

It should be noted that when Jousselme distance is used in calculating
distance between evidence, both single and composite hypotheses are consid-
ered, i.e., 2X−1 elements. However, as only single hypotheses are considered
in the EBRB system, Jousselme distance would be simplified as:

dJac(m1,m2) =

√
1

2
(m1 −m2)

′(m1 −m2) =

√√√√1

2

J∑
j=1

(m1,j −m2,j)
2 (36)

Obviously, there is 0 ≤ dJac ≤ 1, hence, the similarity can be calculated as
S = 1− dJac.

Jousselme distance has been applied to calculate the similarity between
the input and the antecedent of the extended belief rule in several studies.
However, though it could effectively model the difference between two belief
structures, there still are some problems, and the most significant one is that
the belief structure itself is not well-considered, and simply calculating the
average value could neglect the characteristics of the belief structures. Hence,
a modified Jousselme distance is introduced in this paper, where the sum of
belief structures is used as the denominator, and is defined as follows:

dNew(m1,m2) =

√√√√ ∑J
j=1 (m1,j −m2,j)

2∑J
j=1 (m1,j)

2 +
∑J

j=1 (m2,j)
2

(37)

In order to better demonstrate the performance and characteristics of
different similarity measures, consider the following example.

Example 1. Letm1 andm2 be two evidence, wherem1 = {(H1, 0.4), (H2, 0.3), (H3, 0.3)}
andm2 = {(H1, 0.2), (H2, 0.7), (H3, 0.1)}. Then, by using the above-similarity
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Table 1: Characteristics and results of different similarity measures for Example 1

Similarity measure Calculation formula Similarity

Euclidean distance dEuc =
√∑J

j=1 (mi,j −m2,j)2 0.5101

Manhattan distance dMan(m1,m2) =
∑J

j=1 |m1,j −m2,j| 0.2000

Chebyshev distance dCheb(m1,m2) = maxj |m1,j −m2,j| 0.6000

Sorensen distance dSor(m1,m2) =
∑J

j=1 |m1,j−m2,j |∑J
j=1 (m1,j+m2,j)

0.4000

Lorentzian distance dLor(m1,m2) =
∑J

j=1 ln(1 + |m1,j −m2,j|) 0.2989

Intersection similarity SIS(m1,m2) =
∑J

j=1min(m1,j,m2,j) 0.6000

Inner product similarity SIP (m1,m2) =
∑J

j=1m1,jm2,j 0.3200

Tanimoto similarity STani(m1,m2) =
∑J

j=1 m1,jm2,j∑J
j=1 (m1,j)

2+
∑J

j=1 (m2,j)
2−

∑J
j=1 m1,jm2,j

0.5714

Cosine similarity SCos =
∑J

j=1 m1,jm2,j√∑J
j=1 (m1,j)

2
√∑J

j=1 (m2,j)
2

0.7468

Dice similarity SDice(m1,m2) =
2
∑J

j=1 m1,jm2,j∑J
j=1 (m1,j)

2+
∑J

j=1 (m2,j)
2 0.7273

Fidelity similarity SFid(m1,m2) =
∑J

j=1

√
m1,jm2,j 0.9143

Bhattacharyya distance dB(m1,m2) = − ln
∑J

j=1

√
m1,jm2,j 0.9104

Hellinger distance dHel(m1,m2) = 2
√
1−

∑J
j=1

√
m1,jm2,j 0.4145

Matusita distance dMat(m1,m2) =
√
2− 2

∑J
j=1

√
m1,jm2,j 0.5860

Squared-Chord similarity SSq = 2
∑J

j=1

√
m1,jm2,j − 1 0.8286

Squared Euclidean distance dsqe(m1,m2) =
∑J

j=1 (m1,j −m2,j)
2 0.7600

Jousselme distance dJac(m1,m2) =
√

1
2

∑J
j=1 (m1,j −m2,j)

2 0.6536

Modified Jousselme distance dNew(m1,m2) =

√ ∑J
j=1 (m1,j−m2,j)

2∑J
j=1 (m1,j)

2+
∑J

j=1 (m2,j)
2 0.4778

measures, the similarity between m1 and m2 is calculated, as summarized in
Table 1.

From Table 1, it can be found that for different similarity measures, the
obtained results for Example 1 are clearly different. More importantly, the
differences among the results of different similarity measures could be quite
significant, as the similarity calculated by the Manhattan distance is 0.2000,
whereas the similarity calculated by the Fidelity similarity is 0.9143. There-
fore, it is possible to combine the results using these different similarity mea-
sures to obtain more balanced and reliable results.

4. Ensemble method for EBRB systems with different similarity
measures

Due to the different characteristics of different problems, different sim-
ilarity measures may be needed in the EBRB system to achieve the best
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results, and it is necessary to combine the results of EBRB systems with
different similarity measures to achieve higher accuracy. Hence, in this sec-
tion, ensemble method for EBRB systems with different similarity measures
is proposed, and it is comprised of two main components: an adaptive weight
learning method for EBRB systems with different similarity measures, and
an ER-based combination method for aggregating inferential results of EBRB
systems with different similarity measures.

4.1. Framework of the EBRB ensemble method

In this section, the framework of the ensemble method for EBRB systems
is illustrated, and as shown in Fig 1, the proposed method mainly includes
three main phases.
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Figure 1: Framework of the proposed method.

First, EBRB systems with different similarity measures are constructed
using training data based on the EBRB generation method [11], where the
input is used to generate the antecedent attributes and the output is used
to generate the consequents of the extended belief rules. Different similarity
measures are applied in the inference approach, and a number of EBRB
systems can be obtained.

Second, since each EBRB system with different similarity measures can
produce an inferential result for the same input, it is necessary to combine
the inferential results of all EBRB systems to achieve better results, which
usually have different accuracy and importance. Hence, a weight learning
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method is applied to determine the importance of each EBRB system with
different similarity measures.

Third, in order to combine the inferential results of all EBRB systems with
different similarity measures, the ER algorithm is applied, and an ER-based
combination method for aggregating results of different systems is introduced.

From the framework of the EBRB ensemble method, it is clear that the
generation of EBRB systems with different similarity measures can be con-
ducted based on the conventional generation method directly using training
data since the EBRB system can be regarded as a data-driven system, and
each EBRB system would have a different similarity measure, corresponding
to the similarity measures introduced in Section 3.

4.2. The adaptive weight learning method for EBRB systems with different
similarity measures

For different problems, there is no universal similarity measure that could
achieve the best result due to their different characteristics, hence, when
combining the inferential results of EBRB systems with different similarity
measures, different EBRB systems could have different weights since they
may have different performance. Suppose M weights {ω1, ω2, . . . , ωM} are
used to represent the importance of each EBRB system with different sim-
ilarity measures. Normally, it would be difficult to determine the optimal
values of these weights by simply using expert knowledge as a small change
may significantly influence the result of EBRB system. In recent years, the
differential evolution (DE) algorithm has been widely used in optimization
problems. Hence, since the weight learning process can be regarded as a
typical optimization problem, a weight learning method based on the DE
algorithm is proposed to determine the optimal value of these weights.

Proposed by Storn and Price [44], the DE algorithm has been widely
used in optimization problems in the past decades. The basic idea of DE
algorithm is to generate new candidate solutions by mutation and crossover
operations according to the evolution strategy until the optimal solution is
achieved or the ending criteria are reached. Based on the DE algorithm, the
detailed steps of the weight learning method are introduced as follows.

Step 1: Initialize a set of candidate solutions, suppose that there are C
sets of M solutions and the cth candidate is expressed as follows:

idc = {idc,m;m = 1, 2, . . . ,M}; c = 1, 2, . . . , C (38)
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where idc,m is the importance degree of the mth system of the c set, and their
initial value is determined using a random value between 0 and 1, i.e.,

idc,m = random(0, 1); c = 1, 2, . . . , C;m = 1, 2, . . . ,M (39)

Step 2: Generate new candidate solutions. For each candidate set idc
in the C candidate sets, a new candidate set id0c is generated by using three
different candidate sets randomly selected from the C candidate sets, denoted
as id1c , id

2
c , and id3c , respectively. The weights in the candidate set id0c are

assigned based on the evolution strategy as follows [45]:

id0c,m =

{
idc,m, if random(0, 1) > CR

id1c,m + F × (id2c,m − id3c,m), otherwise
(40)

where F and CR are mutation and crossover constants, and are usually set
as 0.9 and 0.5, respectively.

Step 3: Update all candidate solutions. When the importance degree
in the new candidate set id0c exceeds the range [0, 1], a new value should be
generated using Eq. (39). Then, according to the ER-based combination
method, the error of the candidate set id0c , e.g., MSE or classification error,
denoted as ϵ(id0c), can be calculated using training data, and the importance
degrees of the candidate set idc should be updated as follows:

idc =

{
id0c , if ϵ(id0c) < ϵ(idc)

idc, otherwise
(41)

with

ϵ(idc) =
T∑
t=1

Et, Et =

{
1, if G(xt) ̸= yt

0, otherwise
(42)

where G(xt) represents the inferential results of the EBRB system for the
tth input xt, and yt is the actual output of the tth input.

Step 4: Select the best candidate solution. When the number of itera-
tions reaches the maximum number of iterations S, the candidate set with
the minimum error is selected as the best one, and its importance degrees are
regarded as optimal and can be used to obtain the optimal weights for com-
bining M EBRB systems with different similarity measures. The weights can
be calculated based on the optimal importance degrees idoptimal as follows:

ωoptimal =

{
idoptimal,m∑M

m=1 idoptimal,m

;m = 1, 2, . . . ,M

}
(43)
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Remark 1. Step 3 guarantees that all candidate sets can only get better
results or remain unchanged, hence, the weight learning process can converge
to an optimal set of weights after performing S iterations.

Remark 2. The optimal results are directly affected by the maximum
number of iterations S and the number of candidate sets C, and the infer-
ential accuracy would become better if the C and S are larger, however, the
weight learning process would also be more time-consuming. Hence, it is nec-
essary to carefully choose these two parameters based on the actual system
and situation to balance between inferential performance and time cost.

4.3. The ER-based combination method to aggregate inferential results of dif-
ferent EBRB systems

In order to make full use of different similarity measures for EBRB sys-
tems, it is necessary to develop an effective combination method to combine
the inferential results of these EBRB systems with different similarity mea-
sures. As the results of all the EBRB systems are independent, the ER
algorithm can be applied to propose a combination method for combining
these EBRB systems.

Consider the importance of different EBRB systems with different sim-
ilarity measures, together with the analytical ER algorithm, an ER-based
combination method is proposed to aggregate the inferential results of EBRB
systems with different similarity measures, and the process of the proposed
method is detailed as follows:

Step 1: Suppose there are M EBRB systems with different similarity
measures, and the inferential result of the mth EBRB system is denoted
as fm(x) = {(Dn, β

m
n )} while x being the input. Therefore, the inferential

results of all EBRB systems with different similarity measures g(x) can be
represented as follows:

g(x) =


β1
1 β1

2 . . . β1
N

β2
1 β2

2 . . . β2
N

...
... . . .

...
βM
1 βM

2 . . . βM
N

 (44)

Step 2: Using the adaptive weight learning method detailed in Section
4.2, the weight of each EBRB system should be obtained. Then, using ωm to
represent the weight of the mth EBRB system, the analytical ER algorithm
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is applied to aggregate the inferential results of all EBRB systems as follows:

βn =
d
[∏M

m=1

(
ωmβ

m
n + 1− ωm

∑N
k=1 β

m
k

)
−
∏M

m=1

(
1− ωm

∑N
k=1 β

m
k

)]
1− d

[∏M
m=1 (1− ωm)

]
(45)

with

d =

[
N∑

n=1

M∏
m=1

(
ωmβ

m
n + 1− ωm

N∑
k=1

βm
k

)
− (N − 1)

M∏
m=1

(
1− ωm

N∑
n=1

βm
n

)]−1

(46)
where βn denotes the aggregated belief degree on the nth grade.

Step 3: To obtain final inferential results, for regression problems, the
final result can be produced using the referential value u(Dn) of the nth grade
as follows:

G(x) =
N∑

n=1

u(Dn)βn (47)

For classification problems, the final result can be obtained according to
the biggest value from N aggregated belief degrees as follows

G(x) = Dt, t = arg max
n=1,...,N

{βn} (48)

5. Case study

In order to validate the performance of the above-mentioned similarity
measures as well as the proposed ensemble method for EBRB with different
similarity measures, a case study on classification problem using datasets
from the well-known UCI machine-learning repository [46] is conducted.

5.1. Datasets and experimental setting

In order to test the performance of different similarity measures and the
effectiveness and efficiency of the proposed method, 25 classification datasets
from the UCI machine learning repository are chosen, and the main charac-
teristics of these datasets are summarized in Table 2.

To construct the EBRB, suppose that each antecedent attribute has three
antecedent grades and the consequent has the same number of grades as the
number of classes. Furthermore, 10-fold cross-validation (10-CV) is used in
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Table 2: Statistics on classification datasets

Dataset # instances # attributes # classes
Avila 20867 10 12
Banana 5300 2 2
Banknote 1372 4 2
Breast 106 9 6
Cancer 699 9 2
Car 1728 6 4
Diabetes 768 8 2
Ecoli 336 7 8
Glass 214 9 7
Haberman 306 3 2
Iris 150 4 3
Knowledge 403 5 4
Letter 20000 16 26
Liver 345 6 2
Mammographic 830 5 2
Pageblocks 5472 10 5
Red wine 1599 11 10
Seeds 210 7 3
Transfusion 748 4 2
Vehicle 846 18 4
Vertebral 310 6 3
Vowel 990 10 11
Wine 178 13 3
Winconsin 683 9 2
Yeast 1484 8 10

this study, where each dataset is divided evenly into 10 blocks, with 9 blocks
as training data and the remaining one as testing data.

Taking Iris dataset as an example, firstly, all four antecedent attributes
are defined using three referential grades, and these grades are chosen evenly
from each antecedent attribute data. The corresponding referential values
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for each antecedent attribute are expressed as follows:

U1 ∈ {L,M,H} = {4.3, 6.1, 7.9}
U2 ∈ {L,M,H} = {2, 3.2, 4.4}
U3 ∈ {L,M,H} = {1, 3.95, 6.9}
U4 ∈ {L,M,H} = {0.1, 1.3, 2.5}

Three consequent referential grades are used to described three classes as
follows:

D ∈ {Iris Setosa, Iris Versicolour, Iris Virginica} = {1, 2, 3}

150 Iris data are equally divided into 10 blocks, in each iteration, 9 of
the 10 blocks are used as training data to construct the EBRB, and the
inferential result of each EBRB system can be obtained using different simi-
larity measures based on the ER algorithm. The inferential results of all the
EBRB systems are combined based on the proposed ensemble method for
EBRB system with different similarity measures, where the weight of each
EBRB system is determined based on the adaptive weight learning method
using the DE algorithm. Finally, the accuracy of different EBRB systems
is verified by the remaining one-block testing data. In order to more pre-
cisely and effectively compare the results, 5 independent runs of 10-CV are
conducted.

5.2. Comparative analysis of different similarity measures

Firstly, as EBRB systems with different similarity measures could have
different performance, in order to verify the applicability and performance of
these similarity measures as well as the proposed method, the classification
result of these EBRB systems and the EBRB system using the proposed
method, denoted as ESM, are compared, and the classification accuracy of
different EBRB systems are shown in Table 3 and Fig 2.

As shown in Table 3, though the Euclidean distance could achieve gen-
erally satisfying accuracy, the results are not necessarily the best, in fact,
for datasets such as Car and Wine, its accuracy is clearly lower than other
similarity measures. From the classification results of different EBRB sys-
tems with different similarity measures, it can be concluded that there is
no universal similarity measure that can achieve the best accuracy for all
datasets, as many factors such as internal structure and noise data are likely
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Figure 2: Average classification accuracy (%) of EBRB systems with different similarity
measures and the proposed method.

to affect the classification results. For example, one of the worst similarity
measures, SFid could still reach the second-best accuracy for Car dataset.
However, it is also worth noting that though they cannot always achieve the
best accuracy, several similarity measures stand out for being able to obtain
relatively satisfactory results, such as the Lorentzian distance measure, as
it could reach one of the highest accuracies for most datasets. Therefore,
it is worth considering replacing the conventional Euclidean-based similarity
in the EBRB system with novel similarity measures such as the Lorentzian
distance.

More importantly, as demonstrated in Table 3 and Fig 2, the EBRB sys-
tem using the proposed method always reaches the best accuracy. Further-
more, because of the weight learning process, the impact of noise data could
be reduced, and its accuracy is even better than the best result from other
EBRB systems. For example, for Diabetes dataset, the proposed method
reaches 77.14% accuracy, which is significantly higher than the best results
from other EBRB systems (75.15%), and it shows that the proposed method
can improve the performance of the EBRB system. Therefore, it can be con-
cluded that the proposed ensemble method for EBRB systems with different
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similarity measures is effective in assembling the best results of different
EBRB systems to achieve the best accuracy.

In order to better demonstrate the effectiveness and efficiency of the pro-
posed method, the nonparametric statistical test is performed, where the
proposed method is compared in terms of classification accuracy. The Fried-
man tests are performed in the widely used KEEL [47], and the results are
summarized in Table 4 and Table 5.

Table 4: Average Rankings of different methods (Friedman)

Method Ranking
dEuc 6.18
dMan 6.58
dCheb 10.24
SCos 14.62
dSor 10.38
dLor 5.36
SIS 9.02
SIP 13.52
dTani 10.94
SDice 14.16
SFid 14.46
dB 13.74
dH 9.9
dM 8.84
dsqc 12.18
dsqe 10.9
dJou 11.12
dMJ 6.86
ESM 1

From Table 4, it can be found that for the first step of the Friedman
test, the ranking of the ESM-EBRB is 1, which clearly indicates that the
proposed ESM-EBRB method could achieve superior performance compared
with other methods. From Table 5, it can be found that for the post hoc step,
the proposed method is compared pairwisely against other methods, where
the p-value for most methods is less than 0.05, which further confirms the
good performance of the proposed method. Therefore, from the statistical
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Table 5: Post Hoc comparison Table for α = 0.05 (FRIEDMAN)

i Method z = (R0 −Ri)/SE p
18 SCos 8.557185 0
17 SFid 8.45666 0
16 SDice 8.268176 0
15 dB 8.004298 0
14 SIP 7.866076 0
13 dsqc 7.02418 0
12 dJou 6.358202 0
11 dTani 6.245112 0
10 dsqe 6.219981 0
9 dSor 5.893274 0
8 dCheb 5.805315 0
7 dH 5.5917 0
6 SIS 5.038813 0
5 dM 4.925722 0.000001
4 dMJ 3.681726 0.000232
3 dMan 3.505807 0.000455
2 dEuc 3.254495 0.001136
1 dLor 2.739305 0.006157

test results, it can be concluded that the proposed method could provide
more reliable and accurate results by combining the results of different EBRB
systems.

5.3. Comparison with other rule-based systems

In order to further validate the effectiveness and efficiency of the pro-
posed method, the classification accuracy of the proposed method is further
compared with several state-of-the-art rule-based systems, including fuzzy
rule-based classification system (FRBCS) [48], belief rule-based classifica-
tion system (BRBCS) [7], fuzzy rule approach based on genetic cooperative-
competitive learning (GCCLFR) proposed by Ishibuchi et al. [49], fuzzy
rule-based system with rule weight specification (WFRBCS) proposed by
Ishibuchi and Yamamoto [50], selection and reduction-based belief rule-based
system based on greedy method (SR-BRB) [8], and EBRB with Euclidean
distance measure (C-EBRB). The comparison results are shown in Table 6.
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Table 6: Classification accuracy of the proposed method compared with other rule-based
systems

Dataset FRBCS BRBCS GCCLFR WFRBCS SR-BRB C-EBRB ESM-EBRB
Avila 35.52% 36.89% 41.38% 8.31% 25.89% 41.29% 42.79%
Banana 57.47% 61.73% 56.72% 60.32% 62.92% 61.57% 62.84%
Banknote 93.78% 95.68% 88.40% 95.12% 97.59% 98.44% 99.05%
Breast 52.57% 67.33% 57.53% 43.38% 68.18% 69.53% 71.28%
Cancer 93.16% 94.84% 86.64% 92.62% 94.91% 96.35% 97.01%
Car 83.14% 90.37% 70.02% 77.26% 91.03% 83.72% 93.46%

Diabetes 66.61% 70.32% 64.97% 72.90% 72.91% 74.74% 77.24%
Ecoli 75.70% 77.58% 52.08% 70.85% 78.26% 77.48% 83.72%
Glass 63.58% 68.76% 49.51% 60.72% 69.05% 61.79% 62.82%

Haberman 69.61% 68.74% 73.20% 73.21% 75.33% 73.14% 74.12%
Iris 93.33% 94.33% 96.67% 94.00% 98.67% 95.33% 98.00%

Knowledge 78.91% 86.13% 86.35% 66.74% 87.54% 85.65% 89.03%
Letter 89.09% 93.46% 32.26% 33.74% 94.13% 92.92% 93.53%
Liver 57.68% 59.91% 59.42% 57.97% 60.87% 61.18% 64.08%

Mammographic 71.80% 78.42% 77.71% 79.64% 82.17% 79.08% 80.48%
Pageblocks 91.63% 94.14% 89.78% 91.92% 96.27% 93.51% 93.53%
Red wine 47.60% 58.29% 47.40% 51.47% 58.72% 59.21% 62.15%
Seeds 81.57% 91.90% 90.48% 91.43% 94.29% 92.00% 94.76%

Transfusion 72.61% 76.20% 76.20% 76.60% 76.87% 76.58% 78.67%
Vehicle 58.49% 69.85% 52.83% 60.17% 71.28% 70.99% 74.71%
Vertebral 74.58% 80.03% 60.00% 60.00% 83.97% 69.61% 79.96%
Vowel 89.34% 93.74% 39.29% 48.08% 94.56% 94.32% 98.63%
Wine 90.95% 94.31% 93.79% 92.14% 94.90% 95.53% 97.84%

Wisconsin 91.06% 94.44% 95.61% 87.21% 95.32% 94.16% 97.81%
Yeast 46.23% 55.76% 34.02% 25.74% 52.68% 49.81% 57.48%

As shown in Table 6, the proposed method could achieve generally fa-
vorable results compared with other rule-based systems. For example, for
Banknote dataset, the accuracy of ESM-EBRB is 99.05%, which is signifi-
cantly better than FRBCS (93.78%), BRBCS (95.68%), GCCLFR (88.40%),
WFRBCS (95.12%) , SR-BRB (97.59%), and C-EBRB (98.44%). However,
it also should be noted that the classification results of the proposed method
for multi-class datasets are less satisfying, for example, for Glass dataset,
the proposed method only reaches better results than GCCLFR, WFRBCS
and C-EBRB. That is because when the number of classes increases, sim-
ply adjusting the similarity measure may not be efficient enough, and some
inconsistent rules could still be activated, thus affecting the classification ac-
curacy. For two-class or three-class datasets, the inconsistency is relatively
low, thus better accuracy could be obtained. Therefore, it can be concluded
that the proposed method could achieve better accuracy than other rule-
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based systems for small-scale datasets.

5.4. Comparison with conventional machine learning methods

To further verify the validity of the proposed method, the classification
results of the proposed method are also compared with several conventional
machine learning methods. The machine learning methods are conducted
using the Waikato Environment for Knowledge Analysis (WEKA) software
[51], where k-nearest neighbor (KNN), naive Bayes (NB), C4.5, support vec-
tor machine (SVM), and artificial neural network (ANN) are utilized. For
these methods, the settings are as follows: k for kNN is set to be 5% of the
samples in the training set, i.e., the top 5% nearest neighbors in the training
set are used (decimals are omitted), the minimum number of instances per
leaf is set as 2 for C4.5, the polynomial kernel is adopted in SVM and 50%
of the sum of the number of attributes and classes is the number of hidden
layers for ANN. The results of the aforementioned machine learning methods,
as well as ESM-EBRB, are shown in Table 7.

Based on the comparison of classification results of the proposed method
with conventional machine learning methods, it can be concluded that the
proposed method can achieve relatively satisfying results. For example, for
Cancer and Iris datasets, the proposed method obtains 97.01% and 98.00%
accuracy, respectively, outperforming other methods. As for other datasets
such as Banknote, Vehicle and Wine, though the proposed method fails to
generate the highest accuracy, its results are still relatively high, better than
most of the other methods. However, it should be noted that for some multi-
class datasets, such as Glass and Ecoli, the result of the proposed method
is less satisfying, which indicates that the proposed method is less ideal for
multi-class datasets. Furthermore, from the comparison, it can be found
that there is no universal method that can achieve the best accuracy for all
datasets, as many factors such as internal structure and noise data would
likely affect the classification results. It can be concluded that the proposed
method provides an effective and efficient way for small-scale classification
problems.

Table 8 shows the running time of these methods on the testing dataset.
From Table 8, it can be observed that the running time of ESM-EBRB is
clearly higher than the comparative methods for many datasets, which can be
explained by the fact that ESM-EBRB combines the results of several EBRB
systems when determining the classification. However, it is worth noting
that the differences in the running time are not very significant, which can
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Table 7: Classification accuracy of the proposed method compared with conventional
machine learning methods

Dataset kNN NB C4.5 SVM ANN ESM-EBRB
Banknote 98.98% 84.26% 98.54% 98.03% 99.93% 99.05%
Breast 70.67% 70.59% 70.63% 69.50% 63.54% 71.28%
Cancer 95.96% 92.97% 93.32% 62.74% 96.31% 97.01%
Car 93.11% 85.60% 92.34% 91.99% 94.99% 93.46%

Diabetes 74.09% 76.30% 73.82% 65.10% 75.39% 77.24%
Ecoli 85.71% 85.42% 84.23% 75.60% 86.01% 83.72%
Glass 66.36% 48.60% 66.82% 68.69% 67.76% 62.82%

Haberman 70.22% 69.60% 75.53% 71.11% 74.55% 74.12%
Iris 96.67% 96.00% 96.00% 96.67% 97.33% 98.00%

Knowledge 84.49% 79.53% 88.40% 85.56% 88.97% 89.03%
Liver 61.88% 54.80% 63.38% 59.49% 64.46% 64.08%

Mammographic 78.46% 78.36% 82.10% 79.29% 80.96% 80.48%
Red wine 59.59% 54.48% 60.04% 61.12% 63.03% 62.15%
Seeds 92.38% 91.43% 91.90% 90.48% 95.24% 94.76%

Transfusion 75.16% 73.54% 78.01% 74.44% 77.92% 78.67%
Vehicle 70.00% 42.42% 71.87% 59.95% 76.47% 74.71%
Vertebral 80.01% 76.66% 79.00% 78.89% 79.25% 79.96%
Vowel 97.07% 64.59% 80.04% 84.14% 92.81% 98.63%
Wine 93.29% 90.71% 92.84% 93.13% 97.82% 97.84%
Yeast 58.22% 57.61% 55.39% 43.26% 59.03% 57.48%

be tolerated in most cases. Nevertheless, the applicability of the ESM-EBRB
method for large-scale datasets could be limited.

6. Conclusion

In this paper, in order to address the insufficiency in the similarity mea-
sure of the conventional EBRB system, a variety of similarity measures are
analyzed, and their application in the EBRB system is studied. Based on
that, an ensemble method for EBRB systems with different similarity mea-
sures is proposed. Twenty classification datasets are tested with 10-fold
cross-validation to validate the effectiveness and efficiency of the proposed
method, and the results are compared with some of the state-of-the-art rule-
based systems and machine learning methods. The main contributions of
this paper can be summarized into three aspects below:

(1) Previous studies on EBRB systems simply use Euclidean distance
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Table 8: Running time (s) of the proposed method compared with conventional machine
learning methods

Dataset kNN NB C4.5 SVM ANN ESM-EBRB
Banknote 0.4391 0.2355 0.1874 0.1541 0.1832 0.4551
Breast 0.0018 0.0016 0.0011 0.0021 0.0011 0.0015
Cancer 0.2764 0.1829 0.1296 0.1545 0.1607 0.2563
Car 0.3546 0.3241 0.2864 0.3053 0.2958 0.3428

Diabetes 0.0574 0.0483 0.0387 0.0362 0.0390 0.0597
Ecoli 0.0132 0.0127 0.0113 0.0098 0.0118 0.0152
Glass 0.0118 0.0075 0.0068 0.0059 0.0089 0.0113

Haberman 0.0089 0.0067 0.0053 0.0049 0.0058 0.0085
Iris 0.0019 0.0016 0.0014 0.0014 0.0012 0.0018

Knowledge 0.0098 0.0079 0.0073 0.0068 0.0073 0.0121
Liver 0.0213 0.0189 0.0174 0.0167 0.0182 0.0193

Mammographic 0.0489 0.0346 0.0322 0.0310 0.0347 0.0488
Red wine 0.6315 0.5426 0.4858 0.4507 0.5029 0.7326
Seeds 0.0069 0.0064 0.0063 0.0059 0.0067 0.0068

Transfusion 0.0089 0.0064 0.0058 0.0053 0.0063 0.0076
Vehicle 0.2674 0.1583 0.1428 0.1271 0.1375 0.2400
Vertebral 0.0084 0.0070 0.0068 0.0053 0.0060 0.0076
Vowel 0.0846 0.0736 0.0633 0.0582 0.0610 0.0763
Wine 0.0143 0.0127 0.0119 0.0103 0.0117 0.0136
Yeast 0.4128 0.3726 0.2487 0.1878 0.2175 0.4038

to calculate the similarity between the input and the extended belief rule,
which could lead to counterintuitive results in some cases, thus affecting the
performance of the EBRB system. Therefore, a variety of similarity measures
are analyzed, and their application in the EBRB system is studied to take
full advantage of each measure.

(2) According to the analysis of different similarity measures, an adaptive
weight learning method based on the DE algorithm for EBRB systems with
different similarity measures is proposed to determine the weight of each
EBRB system with different similarity measures. Using this method, the
optimal weights for different EBRB systems can be obtained for combination.

(3) The detailed process of the ensemble method for EBRB systems with
different similarity measures is introduced, which can generate better re-
sults by combining the inferential results of EBRB systems with different
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similarity measures. Twenty classification datasets are used for validation,
and it is validated that the proposed EBRB ensemble method can obtain
better results than other EBRB systems with different similarity measures.
More importantly, the proposed method could achieve better performance
than other rule-based systems and conventional machine learning methods
on some classification datasets.

For future research, as the proposed method is less suitable for multi-
class datasets while adjusting rule activation method has been proven to be
effective for some multi-class datasets, how to combine the proposed method
and modified rule activation method should be studied to further promote
the application of the EBRB system.
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