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Abstract

Dependence assessment, which is to assess the dependence level of human er-
rors, is an essential part of human reliability analysis, which could be affected
by the complexity and uncertainty of the real world. In this paper, a novel
dependence assessment method based on cloud model and best-worst method
(BWM) is proposed. Firstly, the influential factors used to measure the de-
pendence level are identified. Then, the social network trust graph of different
experts is constructed, and the weights of different experts are determined.
Next, the cloud model is adopted to represent the linguistic judgments of
experts, where the linguistic judgments are transferred into cloud models,
and the assessments of different experts are combined. Finally, based on the
dependence level of each factor, the final dependence assessment result is
obtained. Two numerical examples are presented to show that the proposed
method can effectively provide reliable assessment results under uncertainty.
In conclusion, the proposed method provides a novel and effective way for
dependence assessment in human reliability analysis.

Keywords: Dependence assessment, Human reliability analysis,
Decision-making, Cloud model, Best-worst method

1. Introduction

In complex human-machine systems, reliability is one of the most impor-
tant concerns, and human operation often plays a significant role, especially
regarding the probability safety assessment (PSA) of the system as human
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errors could often be the cause of engineering accidents and the contribution
of human operation to the reliability and safety of the system is often large
[1–4]. Human reliability analysis (HRA), which is to quantify human con-
tribution to the system risk for a given task, has drawn significant attention
as most engineering systems could be regarded as human-machine systems,
and there have been various studies focusing on the human reliability aspect
in reliability engineering. For instance, Sezer et al. [3] proposed an extended
human error assessment and reduction technique (HEART) evidence theory
approach for assessing human reliability systematically during the gas freeing
process on a chemical tanker ship. Catelani et al. [5] proposed a human re-
liability analysis technique based on an enhanced simulator for human error
probability analysis (SHERPA) method for railway applications to simulate
a time-dependent model of the human error probability during the work
shift. Liu et al. [6] developed a large group success likelihood index method
(SLIM) model to calculate the human error probabilities of operational tasks
considering experts’ noncooperative behaviors and social relations. Abreu
et al. [7] proposed a HRA approach based on the prospective technique for
early consideration of human reliability (TECHR) combined with Bayesian
networks (BNs) to better understand the contribution of the human and
organizational factors in maritime pilotage operations. Ahn and Kurt [8]
introduced a new approach based on cognitive reliability and error analysis
method (CREAM) for human reliability assessment in the maritime domain.
By conducting HRA, it is possible to evaluate and determine the operator’s
contribution to system reliability by predicting human error rates and eval-
uating the degradation in human-machine systems likely caused by human
errors in association with factors that could influence the system behavior
[9–11].

In HRA, dependence assessment, which is to evaluate the dependence
among human failure events (HFEs) and the effect of the dependence on the
final human error probability (HEP), is an important issue [12–14]. Nor-
mally, when there is dependence among tasks, the failure probability of a
task would be higher given the failure of its preceding task. Hence, it is im-
portant to properly assess the dependence among tasks to more accurately
evaluate system risk. The result of dependence assessment is the conditional
human error probability (CHEP), given the failure of the preceding task
[15]. Dependence assessment is often considered in most of human reliability
methods, including technique for human error rate prediction (THERP) [16–
18], CREAM [19–21], accident sequence evaluation program (ASEP) [22, 23],
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standardized plant analysis risk-human reliability analysis method (SPAR-H)
[24–26], and others [27, 28], among which THERP has been one of the most
representative and widely used method. In THERP, five dependence lev-
els, i.e., zero dependence (ZD), low dependence (LD), moderate dependence
(MD), high dependence (HD) and complete dependence (CD), are defined
for evaluating the level of dependence between two tasks regarding several in-
fluential factors. However, despite its simplicity, THERP still received some
criticism for its lack of traceability and repeatability [15, 29].

To overcome these limitations, several methods have been adopted to
extend the THERP model, including decision tree (DT) [30, 31], evidence
theory [3, 32, 33], fuzzy expert system (FES) [15, 29, 34] and evidential
reasoning (ER) [10, 35]. For example, Paglioni and Groth [36] systemically
analyzed fundamental concept of dependency in HRA methods, and proposed
a standardized library of key terms and mathematics to provide a basis for
the development of a dependency framework. Zio et al. [29] used fuzzy ex-
pert system in dependence assessment, where a fuzzy rule base is constructed
based on experts knowledge, and the assessment is conducted based on the
FES. Su et al. [32] adopted the evidence theory into dependence assessment
by using basic probability assignments to represent the experts judgments on
the dependence level. Zhang et al. [15] studied dependence assessment using
the belief rule-based system, where the belief rule-based system is employed
to model uncertainties in experts’ knowledge and the interval belief distri-
bution is used to model interval uncertainty in expert’s judgment. Bi et al.
[35] proposed a novel dependence assessment method based on the interval
evidential reasoning algorithm. Liu et al. [37] employed a system dynamics
approach to the modeling and analysis of the dependencies of performance
shaping factors (PSFs) within the standardized plant analysis of risk–human
reliability analysis method. Gao et al. [38] integrated the 2-tuple linguistic
variables and DEMATEL method, and proposed a novel way to assess the
dependence among human actions in HRA, where 2-tuple linguistic variables
are used to model the linguistic judgments of the experts. Gao et al. [39]
proposed a novel dependence assessment method based on the probabilistic
linguistic term set (PLTS) to assess dependence among human actions, where
the judgments on the influential factors are modeled using PLTS.

By summarizing the development of dependence assessment methods in
HRA, two main issues have received the most attention. One is how to repre-
sent the experts’ knowledge of the dependence level of the influential factors
under uncertainty. Fuzzy numbers and belief functions are the most com-
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monly used [29, 32, 35]. The other is how to accurately and intuitively express
the dependence assessment under uncertainty, where current methods mainly
employ fuzzy numbers, belief functions and D numbers. However, in previous
studies, though the assessment result is mostly reliable, it may not always be
straightforward, and the uncertainty in the assessment is sometimes ignored.

To address these limitations, a novel dependence assessment based on
cloud model and best-worst method (BWM) is presented in this paper. As
a new method for linguistic computation based on probability theory and
fuzzy set theory, the cloud model can effectively model uncertainty and pro-
vide a more intuitive representation in the form of cloud [40–42]. In this
paper, the cloud model is employed to represent the experts’ judgments un-
der uncertainty, and the AHP is adopted to determine the weights of different
influential factors. In addition, a novel subjective weighting method based on
social network trust graph is developed to determine the weights of experts’
judgments, which makes the results more reliable. A case study is presented
to demonstrate the effectiveness of the proposed method. By integrating
the cloud model and the BWM into dependence assessment, the proposed
method could effectively represent the experts’ judgments and provide a more
reliable and intuitive assessment result.

The rest of the paper is organized as follows. Section 2 briefly introduces
the cloud model. Section 3 presents the proposed dependence assessment
method. Section 4 presents two practical cases, and some discussions are
provided in Section 5. Finally, Section 6 concludes the paper.

2. Preliminaries

2.1. Cloud model

As the foundation of cloud-based reasoning, computing and control, the
cloud model is an uncertain transformation model for addressing qualitative
concepts and quantitative descriptions. The cloud model can represent the
process from qualitative concept to quantitative representation through for-
ward cloud generator, and it can also represent the process from quantitative
representation to qualitative concept through reverse cloud generator.

Let U be a qualitative domain, and C be the corresponding qualitative
concept on U . Suppose x is a random number that obeys a normal distri-
bution with x ∈ U , and the membership degree µ(x) of x for C is a random
number with a stable inclination that satisfies µ(x) ∈ [0, 1]. Then x and its
distribution on U is called as cloud droplets and clouds, respectively.
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In the cloud model, the uncertainty of the data x is expressed through
three values: The expected value Ex, which can best reflect this qualitative
concept in the argument domain space and is the location of the cloud center
of gravity. The entropy En, which represents the desirable range of assess-
ment results and the degree of cloud droplet clustering, i.e., its randomness
and fuzziness. The hyper entropy He, which reflects the dispersion degree of
the cloud droplets. The characteristics of the cloud model C = (Ex,En,He)
can be calculated as:

Ex =
1

n

n∑
i=1

Xi (1)

En =

√
π

2
× 1

n

n∑
i=1

|Xi − Ex| (2)

He =

√√√√∣∣∣∣∣ 1

n− 1

n∑
i=1

(Xi − Ex)2 − En2

∣∣∣∣∣ (3)

where Xi (i = 1, 2, . . . , n) represents the ith data from the distribution, and
n is the number of data in the distribution.

By using the forward cloud generator based on the characteristics ob-
tained by the cloud model, a positive random number x ∼ N(Ex,En2) can
be obtained, as shown in Fig 1, and a cloud droplet is defined as (x, µ(x)),
where the cloud droplet membership degree µ(x) is calculated by:

µ(x) = exp

[
−(x− Ex)2

2En2

]
(4)

Let there be two clouds Ci = (Exi, Eni, Hei) and Cj = (Exj, Enj, Hej),
there is:

Ci + Cj =(Exj + Exj,
√

En2
i + En2

j ,
√

He2i +He2j)

Ci − Cj =(Exj − Exj,
√

En2
i + En2

j ,
√

He2i +He2j)

Ci × Cj =(Exi × Exj,
√

(EniExj)2 + (EnjExi)2,
√
(HeiExj)2 + (HejExi)2)

λCi =(λExi,
√
λEni,

√
λHei)

(5)
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Figure 1: Illustration of the cloud model.

Let Ci = (Exi, Eni, Hei) and Cj = (Exj, Enj, Hej) be two clouds, then
the distance between them is defined as:

di,j =
√

|Exi − Exj|2 + |Eni − Enj|2 + |Hei −Hej|2 (6)

Let Ci = (Exi, Eni, Hei) (i = 1, 2, . . . , n) be a set of clouds in the domain
U , the cloud weighted average (CWA) operator is defined as a mapping as:

CWA(C1, C2, . . . , Cn) =
n∑

i=1

wiCi

=

 n∑
i=1

wiExi,

√√√√ n∑
i=1

wi(Eni)2,

√√√√ n∑
i=1

wi(Hei)2


(7)

where (w1, w2, . . . , wn) is the weight vector with 0 ≤ wi ≤ 1 and
∑n

i=1wi = 1.
In the cloud model-based assessment, the 3En principle is often applied

to analyze the assessment results as the droplets in the cloud diagram are
mainly concentrated in the [Ex − 3En,Ex + 3En] interval, as shown in
Fig 1. It should be noted that different distribution locations of the cloud
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droplets represent different qualitative assessments, which are mainly divided
into three part: the main part (Ex − En,Ex + En), which has the highest
membership degree, the secondary part (Ex−2En,Ex−En)∪(Ex+En,Ex+
2En) and the minor part (Ex− 3En,Ex− 2En) ∪ (Ex+ 2En,Ex+ 3En).
Cloud droplets beyond the interval are normally not used as the basis for
qualitative description of the assessment.

2.2. Transform between linguistic terms and clouds

Let U = [xmin, xmax] be the effective domain and S = {s0, s1, . . . , sT} be
a linguistic term set, then T + 1 basic clouds can be generated based on the
golden segmentation method as [43]:

C1 = (Ex0, En0, He0), C1 = (Ex1, En1, He1), . . . , CT = (ExT , EnT , HeT )
(8)

For example, for a linguistic term set with five linguistic terms, five basic
clouds can be obtained as:

C0 =

(
xmin,

En1

0.618
,
He1
0.618

)
C1 =

(
Ex2 − 0.382

xmax + xmin

2
, 0.382

xmax + xmin

6
,
He2
0.618

)
C2 =

(
xmax + xmin

2
, 0.618En1, He2

)
C3 =

(
Ex2 + 0.382

xmax + xmin

2
, 0.382

xmax + xmin

6
,
He2
0.618

)
C4 =

(
xmax,

En3

0.618
,
He3
0.618

)
(9)

where xmin, xmax and He2 are given in advance.

3. Method

In this section, a novel dependence assessment method based on the cloud
model and BWM is developed to assess the dependence among human errors
in HRA, which is consisted of five parts: (1) Influential factors identification;
(2) Expert weight calculation; (3) Influential factor weight calculation; (4)
Cloud model-based influential factor assessment; (5) CHEP calculation. The
detailed process of the proposed method is shown in Fig 2.
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Figure 2: Procedure of the proposed method.

Step 1: Identify the influential factors and the functional rela-
tionship

The first step of the dependence assessment is to identify the factors that
have influences on the dependence of human actions. For example, in pre-
vious research, five influential factors are identified in the THERP model,
namely, “closeness in time”, “similarity of performers”, “task relatedness”,
“similarity of cues” and “similarity of goals” [18]. It is worth noting that
in THERP model, it is suggested that the influential factors could consider
closeness in time and space, functional relatedness (e.g., tasks related to
the same subsystem), stress, similarity of the performers (status, training,
responsibility, and many social and psychological factors), hence, similar in-
fluential factors could be determined for different situations [44, 45]. Fur-
thermore, it is also worth noting that several systemic approaches such as
grounded theory, process hazards analysis (PHA) and process flow failure
modes (PFFM) analysis could be used for identifying the influential factors,
and the identification of the influential factors could be connected to the spe-
cific situation, when the situation changes, the influential factors may change
accordingly.

Moreover, as there are normally several influential factors for dependence
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assessment, it is also necessary to determine the relationship among these
factors, especially for cases where the influential factors are not at the same
level. For instance, the functional relationship among the five influential
factors introduced above is shown in Fig 3. It can be seen that for all five
influential factors, four of them are input factors that can be directly assessed
through the judgments of the experts, and one factor, “task relatedness”, is
an intermediate factor that should be assessed based on the assessments of its
sub-factors [18]. It is worth noting that the functional relationship among the
influential factors is mainly determined based on the analysis of the factors
and their corresponding relations, and different approaches including the
grounded theory, process hazards analysis (PHA), and process flow failure
modes (PFFM) analysis could be used to determine the relationship.

Similarity 
of cues 
(SC)

Similarity 
of goals 

(SG)

Closeness 
in time 
(CT)

Task 
relatedness 

(TR)

Similarity 
of 

performers 
(SP)

Dependence 
level

Figure 3: Example of the functional relationship among the influential factors.

Step 2: Determine the qualitative judgments and anchor points
of the influential factors

The qualitative judgments and the corresponding anchor points provide
guidance for the judgments of experts on the influential factors. Hence, in
order to assess the dependence among human errors, once the influential fac-
tors are determined, their qualitative judgments and anchor points should
be determined accordingly, where the qualitative judgments qualitatively de-
scribe the effect of the factor on the dependence level and the anchor points
represent the possible situation of the factor. For example, for the factor
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“closeness in time”, different values would result in different effects on the
dependence between two actions, such as “5 min” may indicate “Complete
Dependence”, “30 min” may indicate “Moderate Dependence”, and “8 h”
may indicate “Zero Dependence”.

It is worth noting that in the THERP model, five qualitative judgments
are identified, namely, “Zero dependence”, “Low dependence”, “Medium de-
pendence”, “High dependence”, and “Complete dependence”, which are used
for dependence assessment in many previous studies and are used in this
study. As for anchor points, it should be noted that they are mainly deter-
mined based on the analysis of the influential factors and the knowledge of
experts [18].

Step 3: Construct social network trust graph and adjacent ma-
trix of experts

In the proposed method, a social network that is defined by a directional
graph G(E,L) is used to reflect the trust relation of different experts, which
could be regarded as different importance of experts as being trusted by
other experts obviously means higher importance. In the social network
trust graph, edge (Ei, Ej) represents the trust from Ei to Ej, and (Ej, Ei)
represents the trust from Ej to Ei. Hence, a bidirectional trust graph could
be constructed to model the trust relation among the experts.

Moreover, as the trust graph only represents the trust relation not the
specific trust degree, the adjacent matrix is constructed based on the trust
graph to represent the trust among the experts, which is expressed as:

A = [aij]l×l =


a11 a12 · · · a1l
a21 a22 · · · a2l
...

...
. . .

...
al1 al2 · · · all

 (10)

where aij represents the trust degree from Ei to Ej.
It should be noted that the number of experts may vary for different situ-

ations, and there are no strict guidelines on how many experts are required.
However, in many cases, the number of experts mainly lies between 3 to 10.

Step 4: Calculate the weights of experts
In the proposed method, the weights of experts are calculated based on

the in-degree centrality index, which represents the overall trust an expert
could receive from other experts, and the in-degree centrality index C(Ek)
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of expert Ek is calculated by:

C(Ek) =
n∑

i=1

E(aik) (11)

where E(aik) is the converted crisp value of aik.
Generally, the higher the value of the in-degree centrality index, the higher

trust the expert receives from other experts, and the more important the
expert is. Hence, the in-degree centrality index could be regarded as the
importance of the expert, and the weights of experts could be calculated as:

ϕk =
C(Ek)∑l
k=1Ek

(12)

where 0 ≤ ϕk ≤ 1,
∑l

k=1 C(Ek) = 1.
Step 5: Identify the best and the worst influential factors
In dependence assessment, there normally are several influential factors

with functional relationship, furthermore, these influential factors may have
different importance. Therefore, it is necessary to determine the weights of
the influential factors, which describe the degree to which the factors influ-
ence the dependence level. In the proposed method, the BWM is adopted
to weigh the influential factors [46]. For the n influential factors Fj(j =
1, 2, . . . , n), each expert Ek is invited to identify the best, i.e., most impor-
tant, influential factor F k

B and the worst, i.e., least important, influential
factor F k

W based on their understanding and knowledge of the problem.
Step 6: Determine the best-to-others and others-to-worst vec-

tors
The preferences of the best influential factor to other influential factors

and the preferences of other influential factors to the worst influential factor
are assessed by experts using linguistic terms, and the best-to-others and
others-to-worst vectors of Ek are obtained as:

BOk =
(
vkB1, v

k
B2, . . . , v

k
Bn

)
OWk =

(
vk1W , vk2W , . . . , vknW

) (13)

where vkBj denotes the equivalently converted crisp values of the expert’s
linguistic judgment of F k

B over the jth influential factor, and vkjW denotes the
equivalently converted crisp values of the expert’s linguistic judgment of the
jth influential factor over the worst influential factor F k

W , vkBB = vkWW = 1.
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It should be noted that the elements in the best-to-others and other-to-
worst vectors represent the preference between the influential factors, ex-
pressed by crisp values 1–9 corresponding to linguistic terms, where higher
values indicate higher importance.

Step 7: Calculate the weights of influential factors
The optimal weights of influential factors are the one where the maxi-

mum absolute distance between |wk
B/w

k
j − vkBj| and |wk

j /w
k
W − vkjW | is min-

imized. Therefore, in order to calculate the weights of influential factors
(wk∗

1 , wk∗
2 , . . . , wk∗

n ), in this step, the following optimization model is estab-
lished:

min max
j

{∣∣∣∣∣wk
B

wk
j

− vkBj

∣∣∣∣∣ ,
∣∣∣∣∣ wk

j

wj
W

− vkjW

∣∣∣∣∣
}

s.t.


n∑

j=1

wk
j = 1

0 ≤ wk
j ≤ 1

(14)

where ωk
B, ω

k
W , and ωk

j denotes the weight of the best factor, the worst factor,
and the jth factor determined by Ek, respectively.

Eq. (14) can be equivalently converted to the following optimization
model:

min ξk

s.t.



∣∣∣∣∣wk
B

wk
j

− vkBj

∣∣∣∣∣ ≤ ξk∣∣∣∣∣ wk
j

wk
W

− vkjW

∣∣∣∣∣ ≤ ξk

n∑
j=1

wk
j = 1

0 ≤ wk
j ≤ 1

(15)

Hence, by solving the above optimization model, the weights of the influ-
ential factors (wk∗

1 , wk∗
2 , . . . , wk∗

n ) from Ek can be determined.
By combining the calculated weights of influential factors from different
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experts, the overall weights of influential factors can be obtained by:

wi =
l∑

k=1

ϕkw
k∗
i (16)

Step 8: Determine the dependence level among HFEs of each
factor

In the dependence assessment, experts are asked to provide their judg-
ments on the input factors by referring to the anchor points and qualitative
judgments. By referring to the anchor points, the subjectivity of the judg-
ments can be reduced. However, as can be seen from Step 2, since the
judgments on the influential factors are often in the term of linguistic terms,
the judgments provided by the experts could also be in the form of linguistic
terms, and a linguistic assessment matrix can be obtained as:

Y = [yij]M×N (17)

where yij denotes the linguistic judgment of the ith expert on the jth influen-
tial factor with the linguistic term set S = {s0, s1, . . . , sT}, M is the number
of experts and N is the number of influential factors.

Step 9: Transform the judgments of the experts into cloud mod-
els

In dependence assessment, the judgments provided by the experts are
often in the form of linguistic terms, which could then be transformed into
cloud models for the subsequent calculation. According to the conversion
method between linguistic terms and clouds, each linguistic judgment can be
converted into a normal cloud, denoted as Cij = (Exij, Enij, Heij), and the
cloud assessment matrix can be obtained as:

Y = [Cij]M×N (18)

where Cij represents the transformed cloud model of the ith expert’s judg-
ment on the jth influential factor.

Step 10: Combine the judgments of different experts on influ-
ential factors

After determining the weights of different judgments on the same influen-
tial factor, the judgments of different experts could be combined to obtain a
comprehensive assessment of the factor. Since the judgments are in the form
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of clouds and weights of different judgments are considered, the judgments
of different experts could be combined using the CWA operator as:

CWA(C1j, C2j, . . . , CMj) =

 M∑
i=1

wiExij,

√√√√ M∑
i=1

wi(Enij)2,

√√√√ M∑
i=1

wi(Heij)2


(19)

where wi denotes the weight of the ith experts’ judgment, Cij = (Exij, Enij, Heij)
represents the judgment of the ith expert on the jth factor.

Step 11: Combine the assessment on different influential factors
After obtaining the combined assessments on the influential factors, the

assessments should then be combined to obtain the assessment of the influ-
ential factors at the upper level. It can be noted that since the influential
factors have certain kinds of functional relationship, only factors that are
at the same level of the functional relationship will be combined, and the
assessment of a factor at the upper level is obtained by combining the as-
sessments of its sub-factors. For example, for the influential factors shown in
Fig 3, the assessment of factor “Task relatedness” is obtained by combining
the assessments of factors “Similarity of cues” and “Similarity of goals”.

Step 12: Calculate the conditional human error probability
In order to obtain a more illustrative dependence assessment result, the

CHEP value should be calculated. Suppose the combined dependence assess-
ment result is C = (Ex,En,He), by adopting the 3En principle, it can be
noted that the CHEP value would be an interval as:

p−(B|A) = Ex− 3En

p+(B|A) = Ex+ 3En
(20)

Thus, the CHEP value can be obtained as p(B|A) ∈ [p−(B|A), p+(B|A)].
Furthermore, for illustrative purpose, a representative CHEP value could be
obtained as:

pavg(B|A) = Ex (21)

4. Case study

In order to verify the effectiveness and validity of the proposed method,
two numerical examples are studied in this section.
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4.1. Case 1: Post-initiator human failure events of nuclear power plant

4.1.1. Case description

This case study refers to a set of operator actions to avoid excessive boron
dilution in the reactor cooling system in case of an anticipated transient with-
out scram (ATWS) at a nuclear boiling water reactor (BWR). It is assumed
that the standby liquid control system (SLCS) has been successfully initi-
ated by the operators to shut the reactor down. The operators are required
to increase the voiding and inhibit the actuation of the automatic depres-
surization system (ADS) to facilitate the reactor shutdown. The operator
tasks include the prevention of the ADS (Action A) and the control of the
reactor vessel level (Action B) to prevent diluting boron concentration after
the ADS failure. The probability of human failure in controlling the reactor
vessel level is used as the output [39].

4.1.2. Implementation

Based on the proposed method presented in last section, the dependence
degree between two human operations is evaluated as below.

Step 1: Identify the influential factors and the functional rela-
tionship

Based on previous studies [15, 29], five factors, namely, “closeness in
time”, “similarity of performers”, “task relatedness”, “similarity of cues”
and “similarity of goals” are identified as influential factors to evaluate the
dependence degree of human operations. Among these five factors, three of
which directly impact the dependence degree, namely, “closeness in time”,
“similarity of performers”, “task relatedness”, “task relatedness” is further
divided into two sub-factors, “similarity of cues” and “similarity of goals”.
The hierarchical structure of the influential factors is shown in Fig 3.

Step 2: Determine the qualitative judgments and anchor points
of the influential factors

For each influential factor, different dependence levels with different an-
chor points and corresponding qualitative judgments are provided based on
the knowledge of experts. In this case, five dependence levels are defined
based on previous research, namely, “Zero dependence”, “low dependence”,
“Medium dependence”, “High dependence” and “Complete dependence”.
The anchor points and the corresponding qualitative judgments for each in-
fluential factor are shown in Tables 1-4. It should be noted that there are no
anchor points for “task relatedness” as it is an intermediate factor.
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Table 1: Anchor points and qualitative judgments for factor “closeness in time”
Anchor point Dependence level Qualitative judgment
8 h ZD Two tasks are widely separated in time
1 h LD The time difference between tasks is less than wide
30 min MD It is not relevant in the dependence assessment
20 min HD The tasks are in a short time window, but not close enough
5 min CD The two tasks are close in time

Table 2: Anchor points and qualitative judgments for factor “similarity of performers”
Anchor point Dependence level Qualitative judgments
TSC vs control shift room ZD No similarity of performers is present between tasks
Different steam LD A low level of performer similarity exists
Different individual with MD The level of performer similarity is medium
same qualification
Same team HD High level of performer similarity is present

between tasks
Same person CD The tasks are accomplished by the same individual.

In this case, the similarity of performer is complete.

Table 3: Anchor points and qualitative judgments for factor “similarity of cues”
Anchor point Dependence level Qualitative judgment
Different sets of indicators for ZD No similarity of cues is present between tasks
different parameters
Different sets of indicators for LD-MD An intermediate level of cues similarity exists
the same parameters although not fully medium
Single indicator for the same MD-HD The level of cues similarity is more than medium
parameter
Different sets of indicators for HD-CD Slightly more than high level of similarity of cues
the same physical quantity is present between the tasks
Same sets of indicators for the CD The tasks present complete similarity of cues
same sets of parameters

Table 4: Anchor points and qualitative judgments for factor “similarity of goals”
Anchor point Dependence level Qualitative judgment
Different functions by different systems ZD No similarity of cues is present between

tasks
Different functions by same system LD A low level of goals similarity exists
Same function by different systems HD The level of goals similarity is high
Same function by same system CD A complete level of similarity of goals is

present between tasks

Step 3: Construct social network trust graph and adjacent ma-
trix of experts

In this case, three experts are invited, and a five-level linguistic term
set is used for experts to represent their trust degrees, as shown in Table
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5. By analyzing the trust relation, the bidirectional social network trust
graph is constructed, as shown in Fig 4, where the trust relations between
experts are bidirectional. Based on the trust graph, each expert provides
his/her trust degree to other experts, and the adjacent matrix is established,
as shown in Table 6. It should be noted that the trust degrees of the experts
themselves are set to be the highest, i.e., s5, as they have absolute trust in
their assessments.

3
E

2
E

1
E

Figure 4: Social network trust graph of experts.

Table 5: Linguistic terms for expert trust degree

Linguistic term Trust level Crisp value
s1 Very low 1
s2 Low 3
s3 Moderate 5
s4 High 7
s5 Very high 9

Table 6: Adjacent matrix of experts

Expert E1 E2 E3

E1 s5 s3 s4
E2 s1 s5 s4
E3 s2 s3 s5

Step 4: Calculate the weights of experts
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According to the adjacent matrix, the in-degree centrality index of the ex-
perts could be calculated using Eq. (11) as C = C(Ek) = (13, 19, 23). Hence,
via Eq. (12), the weights of experts are obtained as ϕ = (0.2363, 0.3455, 0.4182).

Step 5: Identify the best and the worst influential factors
In this case, the influential factors are with hierarchical relationship, thus,

the best and the worst influential factors are identified separately, corre-
sponding to the hierarchical level. For the first level, i.e., “closeness in time”
(CT), “similarity of performers” (SP), “task relatedness” (TR), each expert
provides his/her judgments on the best and the worst influential factors, as
listed in Table 7. Then, for the second level, i.e., “similarity of cues” (SC)
and “similarity of goals” (SG), each expert identifies the best and the worst
influential factors, shown in Table 7.

Table 7: Best and worst influential factors

Expert
First level Second level

Best Worst Best Worst
E1 SC SG TR CT
E2 SC SG TR CT
E3 SC SG TR SP

Step 6: Determine the best-to-others and others-to-worst vec-
tors

Corresponding to the two levels, two sets of best-to-others and others-to-
worst vectors are determined by the experts, as listed in Table 8.

In terms of all the influential factors with hierarchical relationship, the
weights of the influential factors that are at the second level should be de-
termined first, that is, influential factors “similarity of cues” and “similarity
of goals”. The best and the worst factors among these two factors, as well
as the best-to-others and others-to-worst vectors are obtained from the judg-
ments of each expert, as listed in Table 7. It should be noted that the values
of the best-to-others vector and others-to-worst vector are determined based
on the judgments of the experts on the relative preference among the dif-
ferent influential factors, which are converted from corresponding linguistic
judgments, where higher values indicate higher importance.

Step 7: Calculate the weights of influential factors
Hence, the optimization model could be established to obtain the weights

of the influential factors from different experts. For example, the optimiza-

18



Table 8: Best-to-others and others-to-worst vectors of the experts

Expert Vector
First level Second level

CT TR SP SC SG

E1
Best-to-others 5 3 1 1 2
Others-to-worst 1 3 5 2 1

E2
Best-to-others 5 2 1 1 3
Others-to-worst 1 3 5 3 1

E3
Best-to-others 3 1 5 1 2
Others-to-worst 3 5 1 2 1

tion model regarding E1 for the second-level factors is constructed as:

min ξ1

s.t.
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0 ≤ w1
j ≤ 1, j = 1, 2

By solving the optimization model, the optimal weight from E1 is ob-
tained as w1

SC = 2
3
, w2

SG = 1
3
. Hence, via Eq. (16), the overall weights of

influential factors “similarity of cues” wSC and “similarity of goals” wSG are
obtained as wSC = 0.6955, wSG = 0.3045.

Similarly, the weights of influential factors “closeness in time”, “similarity
of performers”, “task relatedness” are calculated by solving corresponding op-
timization models, and are obtained as wCT = 0.1047, wSP = 0.2583, wTR =
0.6370.

Step 8: Determine the dependence level among HFEs of each
factor

Three experts are invited to give their assessment on the dependence level
of each influential factor based on the anchor points of the influential factors.
The assessment results are shown in Table 9.

Step 9: Transform the judgments of the experts into cloud mod-
els
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Table 9: Expert assessments on the dependence level of each influential factor

Expert Influential factor Dependence level

E1

closeness in time MD
similarity of performers HD

similarity of cues LD
similarity of goals LD

E2

closeness in time LD
similarity of performers CD

similarity of cues MD
similarity of goals LD

E3

closeness in time HD
similarity of performers MD

similarity of cues ZD
similarity of goals MD

Based on Table 9, the linguistic judgments of experts on the dependence
level could be transformed into cloud models. First, five basic clouds cor-
responding to five qualitative judgments could be generated to model the
judgments of the experts. In this case, it is set that xmin = 0, xmax = 1 and
He2 = 0.02, and the numerical characteristics of the five basic clouds are
determined as:

C0 = (0.000, 0.103, 0.052), C1 = (0.309.0.064, 0.032),

C2 = (0.500, 0.039, 0.002), C3 = (0.691, 0.064, 0.032),

C4 = (1.000, 0.103, 0.052)

Then, the linguistic judgments of the experts are transformed into cloud
models to establish the cloud assessment matrix. Table 10 shows the cloud
model of expert judgments on the dependence level.

Step 10: Combine the judgments of different experts on influ-
ential factors

By using Eq. (7), the combined cloud models for each influential factor
could be obtained based on the cloud models and weights of different experts,
shown in Table 11. The clouds of these influential factors are shown in Figs
5-8.

Step 11: Combine the assessment on different influential factors
In this case, as the influential factors have a hierarchical relationship, the
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Table 10: Cloud models of expert judgments on the dependence level

Expert Influential factor Cloud model

E1

closeness in time (0.500,0.039,0.002)
similarity of performers (0.691,0.064,0.032)

similarity of cues (0.309.0.064,0.032)
similarity of goals (0.309.0.064,0.032)

E2

closeness in time (0.309.0.064,,0.032)
similarity of performers (1.000,0.103,0.052)

similarity of cues (0.500,0.039,0.002)
similarity of goals (0.309.0.064,0.032)

E3

closeness in time (0.691,0.064,0.032)
similarity of performers (0.500,0.039,0.002)

similarity of cues (0.000.0.103,0.052)
similarity of goals (0.500,0.039,0.002)

Table 11: Combined cloud models for each factor
Influential factor Cloud model
closeness in time (0.500,0.056,0.026)

similarity of performers (0.720,0.072,0.035)
similarity of cues (0.279,0.071,0.035)
similarity of goals (0.368,0.057,0.027)
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Figure 5: Cloud model of the assessment for influential factor “closeness in time”.
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Figure 6: Cloud model of the assessment for influential factor “similarity of performers”.
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Figure 7: Cloud model of the assessment for influential factor “similarity of cues”.

combination of the assessments can be divided into two parts, corresponding
to the hierarchical structure.

Firstly, the dependence level of factor “task relatedness” is calculated
based on the assessments on factors “similarity of cues” and “similarity of
goals”, which is presented in the form of cloud, shown in Fig 9, as:

(0.309, 0.067, 0.033)

Then, by combining the clouds of factors “closeness in time”, “similarity
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Figure 8: Cloud model of the assessment for influential factor “similarity of goals”.
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Figure 9: Cloud model of the assessment for influential factor “task relatedness”.

of performers” and “task relatedness”, the final assessment could be obtained
as:

(0.436, 0.067, 0.033),

and the cloud is shown in Fig 10.
Step 12: Calculate the conditional human error probability
Following the process of the last step, the CHEP value could be calculated

as p(B|A) = [0.235, 0.637], with the representative CHEP value obtained as
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Figure 10: Cloud model of the final dependence assessment.

pavg(B|A) = 0.436.

4.2. Case 2: Human error in blood transfusion

4.2.1. Case description

In modern medical treatment, blood transfusion is one of the most im-
portant and essential means to save lives and reduce incidence. When con-
ducted properly, blood transfusion could help patients receive blood and
reduce harm, however, when conducted improperly, it could lead to infec-
tion and even diseases. Thus, safe and reliable blood transfusion practice
has been studied by minimizing the risk of human errors during transfusion
operation [16]. In this case, the proposed method is applied to analyze and
assess CHEP during blood transfusion operation. Five pairs of sequential
tasks are considered in this case, as shown in Table 12.

Table 12: HRA of blood transfusion operation
Sequential task Action HFE Cause of HFE
T1 Preoperative assessment Insufficient preoperative assess-

ment of blood requirement
Incorrect assessment of potential
blood loss

T2 Request form filling Incorrect information on request
form

Incorrect application form

T3 Transfusion preparation Extensive time before injection Delay in delivering blood to clin-
ics

T4 Transfusing blood Inappropriate timing of transfu-
sion

Inappropriate transfusion time

T5 Transfusion monitoring Reactions occur in the transfu-
sion

Patients are not properly moni-
tored
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In this case, five experts, denoted as E1, E2, E3, E4 and E5, are invited to
provide their assessment on the dependence level. According to their different
backgrounds and experiences, their assessments could vary.

4.2.2. Implementation

In this case, three influential factors are considered, namely, “time close-
ness” (F1), “task relatedness” (F2), and “performers similarity” (F3). Time
closeness represents the time relationship among human actions. Task re-
latedness is assessed by similarity of cues and similarity of goals, and it is
used to represent the relationship among the tasks. Performer similarity rep-
resents factors such as training and status in human actions. It should be
noted that all these three factors are at the same level.

For assessing the dependence level of different factors, five dependence
levels are used, namely, “Zero dependence (ZD)”, “Low dependence (LD)”,
“Medium dependence (MD)”, “High dependence (HD)” and “Complete de-
pendence (CD)”. The qualitative judgments and corresponding anchor points
of each influential factor are listed in Table 13.

Table 13: Anchor points for the influential factors
Time closeness Task relatedness Performer similarity Qualitative judgment
Tasks are widely separated in time Tasks are unrelated No similarity of performers is present ZD
Tasks are moderately farness in time Tasks are slightly related Tasks are accomplished by different

teams
LD

Closeness in time is not relevant in the
dependence assessment

Tasks are moderately related Tasks are accomplished by different in-
dividuals with same qualification

MD

Tasks are moderate close in time Tasks are highly related Tasks are accomplished by the same
team

HD

Tasks are strong close in time Tasks are closely related Tasks are accomplished by the same in-
dividual

CD

Then, the trust degrees of the experts to others and to themselves are
expressed by a five-level linguistic term set, as shown in Table 5. The bidirec-
tional social trust graph is constructed by analyzing the trust relation among
experts, as shown in Fig 11.

Based on the trust graph, the experts are invited to provide their trust
degrees to other experts, and the adjacent matrix is constructed, as shown
in Table 14, where the trust degrees of the experts to themselves are set to
be the highest.

Based on the adjacent matrix, the in-degree centrality index of the ex-
perts are calculated via Eq. (11) as C = C(Ek) = (29, 23, 29, 37, 25).
Thus, according to Eq. (12), the weights of experts are calculated as ϕ =
(0.2028, 0.1608, 0.2028, 0.2587, 0.1748).
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Figure 11: Social network trust graph with five experts.

Table 14: Adjacent matrix of experts

Expert E1 E2 E3 E4 E5

E1 s5 s2 s4 s3 s1
E2 s2 s5 s3 s5 s3
E3 s3 s2 s5 s4 s4
E4 s4 s3 s2 s5 s2
E5 s3 s2 s3 s4 s5

Each expert identifies the best and the worst influential factors according
to their understanding and knowledge, and the identified best and worst
factors are listed in Table 15.

Table 15: The best and the worst influential factors
Expert Best influential factor Worst influential factor
E1 Task (F2) Time (F1)
E2 Time (F1) Task (F2)
E3 Performer (F3) Task (F2)
E4 Task (F2) Performer (F3)
E5 Time (F1) Performer (F3)

By using a five-level linguistic term set as listed in Table 5, the best-to-
others and others-to-worst vectors of five experts are obtained, as listed in
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Table 16.

Table 16: Best-to-others and others-to-worst vectors of the experts

Expert Vector F1 F2 F3

E1
Best-to-others 7 1 3
Others-to-worst 1 7 5

E2
Best-to-others 1 5 3
Others-to-worst 7 1 3

E3
Best-to-others 5 7 1
Others-to-worst 3 1 5

E4
Best-to-others 3 1 7
Others-to-worst 5 7 1

E5
Best-to-others 1 5 7
Others-to-worst 7 3 1

According to Eq. (15), five optimization models are established to obtain
the weights of influential factors regarding each expert. For instance, the
optimization model concerning E1 is constructed as:

min ξ1

s.t.
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By solving the above model, the optimal weights provided by E1 are
obtained as w1∗ = (0.0769, 0.6154, 0.3077). Thus, via Eq. (16), the overall
weights of influential factors are calculated as w = (0.3512, 0.3605, 0.2883).

For each influential factor of four sequential tasks, five experts provide
their assessments based on the anchor points of the influential factors, as
listed in Table 17.

Based on the linguistic judgments of the experts, each assessment could
be equivalently transformed into corresponding cloud models to represent
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Table 17: Expert judgments on the dependence level

Expert Factor
Sequential task

T1 T2 T3 T4 T5

E1

F1 LD ZD HD MD MD
F2 MD CD LD ZD LD
F3 ZD LD MD HD LD

E2

F1 ZD HD LD MD HD
F2 MD LD ZD LD MD
F3 CD HD MD HD HD

E3

F1 MD ZD HD CD LD
F2 HD ZD MD LD HD
F3 LD MD HD MD CD

E4

F1 HD LD MD HD MD
F2 CD HD CD HD LD
F3 MD HD CD ZD LD

E5

F1 LD HD MD MD MD
F2 HD CD LD HD ZD
F2 ZD HD MD LD ZD

the uncertainty and fuzziness of the assessment. In this case, the five basic
clouds are determined as:

C0 = (0.000, 0.103, 0.052), C1 = (0.309, 0.064, 0.032),

C2 = (0.500, 0.039, 0.002), C3 = (0.691, 0.064, 0.032),

C4 = (1.000, 0.103, 0.052)

Hence, the linguistic assessments of experts are transformed into cloud
models to establish the cloud assessment matrix, as shown in Table 18.

For each influential factor, the judgments of different experts could be
combined to obtain the combined cloud models by using Eq. (11), and the
combined clouds of the influential factors are listed in Table 19.

Since all three influential factors are within the same level, the cloud
models of these influential factors could be combined directly to obtain the
overall assessment on the dependence level, and the results are listed in Table
20.

Based on the overall cloud models, the CHEP of different sequential tasks
is computed, as shown in Table 20. As can be seen from Table 20, the third
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Table 18: Transformed cloud models of expert judgments

Expert Factor
Sequential task

T1 T2 T3 T4 T5

E1

F1 (0.309,0.064,0.032) (0.000,0.103,0.052) (0.691,0.064,0.032) (0.500,0.039,0.002) (0.500,0.039,0.002)
F2 (0.500,0.039,0.002) (1.000,0.103,0.052) (0.309,0.064,0.032) (0.000,0.103,0.052) (0.309,0.064,0.032)
F3 (0.000,0.103,0.052) (0.309,0.064,0.032) (0.500,0.039,0.002) (0.691,0.064,0.032) (0.309,0.064,0.032)

E2

F1 (0.000,0.103,0.052) (0.691,0.064,0.032) (0.309,0.064,0.032) (0.500,0.039,0.002) (0.691,0.064,0.032)
F2 (0.500,0.039,0.002) (0.309,0.064,0.032) (0.000,0.103,0.052) (0.309,0.064,0.032) (0.500,0.039,0.002)
F3 (1.000,0.103,0.052) (0.691,0.064,0.032) (0.500,0.039,0.002) (0.691,0.064,0.032) (0.691,0.064,0.032)

E3

F1 (0.500,0.039,0.002) (0.000,0.103,0.052) (0.691,0.064,0.032) (1.000,0.103,0.052) (0.309.0.064,0.032)
F2 (0.691,0.064,0.032) (0.000,0.103,0.052) (0.500,0.039,0.002) (0.309,0.064,0.032) (0.691,0.064,0.032)
F3 (0.309,0.064,0.032) (0.500,0.039,0.002) (0.691,0.064,0.032) (0.500,0.039,0.002) (1.000,0.103,0.052)

E4

F1 (0.691,0.064,0.032) (0.309,0.064,0.032) (0.500,0.039,0.002) (0.691,0.064,0.032) (0.500,0.039,0.002)
F2 (1.000,0.103,0.052) (0.691,0.064,0.032) (1.000,0.103,0.052) (0.691,0.064,0.032) (0.309,0.064,0.032)
F3 (0.500,0.039,0.002) (0.691,0.064,0.032) (1.000,0.103,0.052) (0.000,0.103,0.052) (0.309,0.064,0.032)

E5

F1 (0.309,0.064,0.032) (0.691,0.064,0.032) (0.500,0.039,0.002) (0.500,0.039,0.002) (0.500,0.039,0.002)
F2 (0.691,0.064,0.032) (1.000,0.103,0.052) (0.309,0.064,0.032) (0.691,0.064,0.032) (0.000,0.103,0.052)
F2 (0.000,0.103,0.052) (0.691,0.064,0.032) (0.500,0.039,0.002) (0.309,0.064,0.032) (0.000,0.103,0.052)

Table 19: Combined cloud models of the influential factors

Sequential tasks
Influential factors

F1 F2 F3

T1 (0.3698,0.0680,0.0330) (0.7014,0.0696,0.0330) (0.3528,0.0833,0.0408)
T2 (0.3118,0.0821,0.0413) (0.6060,0.0887,0.0447) (0.5747,0.0598,0.0286)
T3 (0.5467,0.0546,0.0241) (0.4768,0.0794,0.0390) (0.6680,0.0663,0.0302)
T4 (0.6508,0.0635,0.0286) (0.4119,0.0736,0.0369) (0.4067,0.0725,0.0354)
T5 (0.4919,0.0496,0.0194) (0.3631,0.0694,0.0340) (0.4565,0.0810,0.0407)

Table 20: Overall assessment of different sequential tasks

Sequential tasks Overall assessment CHEP
T1 (0.4939,0.0733,0.0354) [0.2740,0.7138]
T2 (0.4937,0.0790,0.0394) [0.2567,0.7307]
T3 (0.5565,0.0677,0.0319) [0.3534,0.7596]
T4 (0.4943,0.0699,0.0338) [0.2846,0.7040]
T5 (0.4353,0.0670,0.0320) [0.2343,0.6363]

pair of sequential tasks has the highest CHEP, and could be regarded as the
one with the highest dependence level.

5. Evaluation and validation

In order to validate the effectiveness of the proposed method, Case 2 is
further analyzed and discussed in this section.
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5.1. Sensitivity analysis

In order to better analyze the performance and behavior of the proposed
method, sensitivity analysis is conducted in this section. In this section,
two sets of sensitivity analyses are conducted, one with the different setting
parameters, and one with different influential factor weights.

Firstly, consider the setting parameters used in the cloud model, a sen-
sitivity analysis with 9 different sets of setting parameters is conducted, as
listed in Table 21. The results of different scenarios are shown in Table 22.

Table 21: Parameter settings of cloud model for sensitivity analysis

Scenario xmin xmax He2
Scenario 1 0 1 0.02
Scenario 2 0.05 0.95 0.02
Scenario 3 0.1 0.9 0.02
Scenario 4 0 1 0.01
Scenario 5 0.05 0.95 0.01
Scenario 6 0.1 0.9 0.01
Scenario 7 0 1 0.03
Scenario 8 0.05 0.95 0.03
Scenario 9 0.1 0.9 0.03

Table 22: Assessment results with different parameter settings
Scenario

T1 T2 T3 T4 T5

Overall assessment CHEP Overall assessment CHEP Overall assessment CHEP Overall assessment CHEP Overall assessment CHEP
Scenario 1 (0.494,0.073,0.035) [0.274,0.714] (0.494,0.079,0.039) [0.257,0.731] (0.557,0.068,0.032) [0.353,0.760] (0.494,0.070,0.034) [0.285,0.704] (0.435,0.067,0.032) [0.235,0.636]
Scenario 2 (0.495,0.073,0.037) [0.276,0.715] (0.498,0.079,0.040) [0.261,0.734] (0.551,0.068,0.034) [0.348,0.754] (0.498,0.070,0.035) [0.289,0.707] (0.438,0.067,0.034) [0.237,0.639]
Scenario 3 (0.497,0.073,0.037) [0.277,0.716] (0.502,0.079,0.040) [0.265,0.738] (0.545,0.068,0.034) [0.342,0.749] (0.502,0.070,0.035) [0.293,0.711] (0.441,0.067,0.034) [0.240,0.641]
Scenario 4 (0.494,0.073,0.019) [0.274,0.714] (0.494,0.079,0.020) [0.257,0.730] (0.556,0.068,0.017) [0.353,0.760] (0.494,0.070,0.018) [0.285,0.704] (0.435,0.067,0.017) [0.235,0.636]
Scenario 5 (0.495,0.073,0.019) [0.276,0.715] (0.498,0.079,0.020) [0.261,0.734] (0.551,0.068,0.017) [0.348,0.754] (0.498,0.070,0.018) [0.289,0.707] (0.438,0.067,0.017) [0.237,0.639]
Scenario 6 (0.497,0.073,0.019) [0.277,0.716] (0.502,0.079,0.020) [0.265,0.738] (0.545,0.068,0.017) [0.342,0.749] (0.502,0.070,0.018) [0.293,0.711] (0.441,0.067,0.017) [0.240,0.641]
Scenario 7 (0.494,0.073,0.056) [0.274,0.714] (0.494,0.079,0.060) [0.257,0.730] (0.556,0.068,0.052) [0.353,0.760] (0.494,0.070,0.053) [0.285,0.704] (0.435,0.067,0.051) [0.235,0.636]
Scenario 8 (0.495,0.073,0.056) [0.276,0.715] (0.498,0.079,0.060) [0.261,0.734] (0.551,0.068,0.052) [0.348,0.754] (0.498,0.070,0.053) [0.289,0.707] (0.438,0.067,0.051) [0.237,0.639]
Scenario 9 (0.497,0.073,0.056) [0.277,0.716] (0.502,0.079,0.060) [0.265,0.738] (0.545,0.068,0.052) [0.342,0.749] (0.502,0.070,0.053) [0.293,0.711] (0.441,0.067,0.051) [0.240,0.641]

From the results in Table 22, it can be found that when the parameter
settings changes, the assessment results change accordingly However, it is
worth noting that the ranking of the sequential tasks generally remains stable,
as T3 always has the highest CHEP and T5 has the lowest. Hence, the
sensitivity results show that the proposed method could provide reliable and
consistent dependence assessment results. Moreover, it is worth noting that
when the value of He2 changes, the CHEP remains unchanged, and that is
because He2 mainly affects the dispersion degree of the cloud droplets, which
is not considered when calculating CHEP.
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Secondly, in the proposed method, several influential factors are consid-
ered for dependence assessment, and the weights assigned to these factors
are determined using the BWM. Since the weights of the influential factors
can significantly influence the evaluation results, a sensitivity analysis is per-
formed using 10 sets of randomly generated factor weights to assess their
effects.
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Figure 12: Dependence assessment results of different influential factor weights.

Fig. 12 shows the rankings of the sequential tasks with different factors
weights based on the CHEP value. From the results, it can be observed that
altering the factor weight could affect the dependence assessment results and
the ranking of the sequential tasks. Though T3 is assessed to be the top 2
tasks, the results of other tasks vary, highlighting the influence and impor-
tance of the factor weights on the dependence assessment results. Therefore,
the sensitivity analysis result further emphasizes the significance of carefully
considering and determining the weights of the influential factors using the
BWM in this study, as they can have a notable impact on overall dependence
assessment results.

5.2. Comparison analysis
In order to validate the effectiveness and feasibility of the proposed method,

a comparison analysis with several existing dependence assessment methods
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is conducted. The results of the proposed method are compared with the
results of the evidence theory method [32], the probabilistic linguistic term
method [39], the interval evidential reasoning method [35], and the improved
evidential method [47]. It should be noted that for these methods, the judg-
ments of the experts are directly aggregated, and the human error probability
of the five dependence levels are listed in Table 23. Based on the results of
these methods, the ranking of the five pairs of sequential tasks is obtained,
as shown in Fig 13.

Table 23: Human error probability of the dependence levels for comparative methods

Dependence level p(B|A)
ZD 0
LD 0.0595
MD 0.1514
HD 0.5050
CD 1

T1 T2 T3 T4 T5
Sequential tasks
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The evidence theory method
The probabilistic linguistic term method
The interval evidential reasoning method
The improved evidential method
The proposed method

Figure 13: Dependence assessment results of different methods.

From Fig 13, it can be found that T3 has the highest dependence level
among all five pairs of sequential tasks according to all five dependence assess-
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ment methods. It is also worth noting that by using the proposed method,
the probabilistic linguistic term method, the interval evidential method and
the improved evidential method, T3 and T4 are assessed to be the top two
highly dependent sequential tasks. Moreover, the sequential tasks with the
lowest dependence level are the same for the probabilistic linguistic term
method, the interval evidential reasoning method, the improved evidential
method and the proposed method, i.e., T5, which is in line with the experts’
analysis that the HFE of “reactions occur in the transfusion” is not highly
rely on the failure of its preceding task “patients are not properly monitored”.
From these results, the effectiveness and feasibility of the proposed method
are further proved.

On the other hand, it is worth noting that there are some differences be-
tween the results obtained using the proposed method and those determined
through the evidence theory method and the interval evidential reasoning
method. The main reasons for that can be summarized in the following: (1)
The compared method adopted evidence theory and interval evidential rea-
soning to represent the assessments of experts. However, these two methods
have some limitations in handling the uncertainty in experts’ assessments.
(2) These methods used AHP to determine the weight of influential factors.
However, the AHP has limitations in dealing with cases with many influential
factors as it would require a significant amount of pairwise comparisons. (3)
These methods ignored the complex trust relation among different experts,
which could lead to inaccuracies when determining the weights of experts.

5.3. Discussion

The results of the proposed method can be presented in two parts. Firstly,
it is the final interval CHEP value and the corresponding representative value,
which could be used for quantitative analysis. Secondly, the final results are
also in the form of cloud model, as shown in Fig 10, which allows a more
intuitive and representative understanding of the assessment result. The un-
certainty in the experts judgments lies in the interval value and cloud model,
which enables the proposed method to provide reliable results under uncer-
tainty. Since the credibility of different experts is taken into consideration
during the assessment, the proposed method focuses more on the assessments
that have more agreements, thus reducing the uncertainty of the final result
to some extent.

The result can be partially explained by examining the assessments and
weights of the influential factors. The weights of the influential factors sug-
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gest that the factor “task relatedness” is more important than other factors,
in other words, the assessment of “task relatedness” would have more in-
fluence on the final result. As shown above, the final result relies more on
“task relatedness” than the other two factors, in line with intuition. In a
word, the proposed method provides a reliable and intuitive way for human
dependence assessment in HRA.

6. Conclusion

Dependence assessment is one of the most important issues in human
reliability, and how to effectively and accurately assess dependence level of
human errors under uncertainty remains challenging. To this end, this paper
proposes a new dependence assessment approach integrating cloud model and
best-worst method, where the cloud model is used to model the uncertainty
of linguistic judgments of experts and the best-worst method is employed
to determine the weights of different influential factors. First, the linguistic
judgments of the experts on the dependence level of the influential factors
are transferred into cloud models. Then, the judgments of different experts
are combined, where the weight of the experts’ judgment is determined using
a subjective weighting method. Next, the assessments of different influential
factors are combined based on the weights determined by using the best-
worst method. Finally, the cloud for the final assessment is calculated, and
the conditional human error probability is calculated. By using the cloud
model to represent and aggregate experts’ judgments under uncertainty, the
proposed method could enhance the reliability and accuracy of the depen-
dence assessment results. Moreover, the adoption of the best-worst method
ensures that the influential factors are accurately weighed, further enhancing
the reliability of the results. In order to demonstrate the effectiveness of
the proposed method two cases are examined, and the results show that the
proposed method could provide reliable and intuitive dependence assessment
results under uncertainty, which is further validated through sensitivity anal-
ysis and comparison analysis. It can be concluded that the proposed method
provides a novel and effective mechanism for dependence assessment in hu-
man reliability analysis under uncertainty, which could be used in the future.

Future research could be carried out in the following directions. First, the
influential factors used in this study are relatively simple, and more factors
could be considered for other problems. Second, the proposed method is re-
stricted to a small group of experts, the application of the proposed method
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to large-group problems may be needed. Third, some dependence assessment
problems may have dynamic features, hence, the proposed method could be
extended to dynamic situations. Fourth, the proposed method mainly fo-
cuses on the assessment of human dependence levels, future studies could in-
tegrate machine learning models such as Bayesian network to obtain human
error probability to provide more reliable and reasonable results. Moreover,
it is worth noting that in this study, the influential factors and their func-
tional relationships are determined based on previous studies intuitively, and
systemic approaches such as grounded theory could be applied to enhance
its reliability.
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